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Abstract
We review our recent work on solitons in the Higgs phase. We use U(NC)

gauge theory with NF Higgs scalar fields in the fundamental representation,
which can be extended to possess eight supercharges. We propose the moduli
matrix as a fundamental tool to exhaust all BPS solutions, and to characterize
all possible moduli parameters. Moduli spaces of domain walls (kinks) and
vortices, which are the only elementary solitons in the Higgs phase, are found
in terms of the moduli matrix. Stable monopoles and instantons can exist
in the Higgs phase if they are attached by vortices to form composite
solitons. The moduli spaces of these composite solitons are also worked
out in terms of the moduli matrix. Webs of walls can also be formed with
characteristic difference between Abelian and non-Abelian gauge theories.
Instanton–vortex systems, monopole–vortex–wall systems, and webs of walls
in Abelian gauge theories are found to admit negative energy objects with the
instanton charge (called intersectons), the monopole charge (called boojums)
and the Hitchin charge, respectively. We characterize the total moduli
space of these elementary as well as composite solitons. In particular the
total moduli space of walls is given by the complex Grassmann manifold
SU(NF)/[SU(NC) × SU(NF − NC) × U(1)] and is decomposed into various
topological sectors corresponding to boundary condition specified by particular
vacua. The moduli space of k vortices is also completely determined and
is reformulated as the half ADHM construction. Effective Lagrangians are
constructed on walls and vortices in a compact form. We also present
several new results on interactions of various solitons, such as monopoles,
vortices and walls. Review parts contain our works on domain walls (Isozumi
Y et al 2004 Phys. Rev. Lett. 93 161601 (Preprint hep-th/0404198),
Isozumi Y et al 2004 Phys. Rev. D 70 125014 (Preprint hep-th/0405194), Eto
M et al 2005 Phys. Rev. D 71 125006 (Preprint hep-th/0412024), Eto M et al
2005 Phys. Rev. D 71 105009 (Preprint hep-th/0503033), Sakai N and Yang Y
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1. Introduction

Topological solitons play very important roles in broad area of physics [18–22]. They appear
various situations in condensed matter physics, cosmology, nuclear physics and high energy
physics including string theory. In field theory it is useful to classify solitons by co-dimensions
on which solitons depend. Kinks (domain walls), vortices, monopoles and instantons are well-
known typical solitons with co-dimensions one, two, three and four, respectively1. They carry
topological charges classified by certain homotopy groups according to their co-dimensions.
If the spatial dimension of spacetime is larger than the co-dimensions, solitons are extended
objects having world volume and are sometimes called ‘branes’. D-branes are solitons in
string theory whereas topological solitons in higher dimensional field theory are models of
branes. D-branes and field theory solitons are closely related or sometimes are identified in
various situations. Recently the brane-world scenario [23–25] are also realized on topological
solitons in field theory or D-branes in string theory.

When solitons/branes saturate a lower energy bound, called the Bogomol’nyi bound,
they are the most stable among solitons with the same topological charge, and are called
Bogomol’nyi–Prasad–Sommerfield (BPS) solitons [26]. BPS solitons can be naturally realized
in supersymmetric (SUSY) field theories and preserve some fraction of the original SUSY [27].
From the discussion of SUSY representation, they are non-perturbatively stable and therefore
play crucial roles in non-perturbative study of SUSY gauge theories and string theory [28].

Since there exists no force between BPS solitons the most general solutions of solitons
contain parameters corresponding to positions of solitons. Combined with parameters in the
internal space, they are called the moduli parameters. A space parametrized by the moduli
parameters is no longer a flat space but a curved space called the moduli space, possibly
containing singularities. The moduli space is the most important tool to study BPS solitons.
When solitons can be regarded as particles, say for instantons in d = 4 + 1, monopoles in
d = 3 + 1, vortices in d = 2 + 1, kinks in d = 1 + 1 and so on, geodesics in their moduli space
describe classical scattering of solitons [29]. In quantum theory, for instance, the instanton
1 In this review, we keep terminology of ‘instantons’ for Yang–Mills instantons in four Euclidean space. They
become particles in 4 + 1 dimensions.
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calculus is reduced to the integration over the instanton moduli space [30]. The same discussion
should hold for a ‘monopole calculus’ in d = 2 + 1, a ‘vortex calculus’ in d = 1 + 1 and so on.
On the other hand, when solitons have world volume, for instance vortex-string in d = 3 + 1,
moduli are promoted to massless moduli fields in the effective field theory on the world
volume of solitons. Therefore moduli space is crucial to consider the brane-world scenario,
solitons in higher dimensions or string theory. The moduli fields describe local deformations
along the world volume of solitons. This fact is useful when we consider composite solitons
made of solitons with different co-dimensions. Namely, composite solitons may sometimes be
regarded as solitons in the effective field theory of the other (host) solitons [31]. For instance
a D/fundamental string ending on a D-brane can be realized as a soliton called the BIon [32]
in the Dirac–Born–Infeld theory on the D-brane.

Construction of solutions and the moduli spaces of instantons and monopoles were
established long time ago and are well known as the ADHM [33, 34] and the Nahm [34, 35]
constructions, respectively. Instantons and monopoles are naturally realized as 1/2 BPS
solitons in SUSY gauge theory with 16 supercharges. The effective theories on them are
nonlinear sigma models with eight supercharges, whose target spaces must be hyper-Kähler
[36–46], and therefore the moduli spaces of instantons and monopoles are hyper-Kähler.

Vacua outside monopoles and instantons are in the Coulomb phase and in the unbroken
phase of the gauge symmetry, respectively. Contrary to this fact, vacua outside kinks or
vortices are in the Higgs phase where gauge symmetry is completely broken. These solitons
can be constructed as 1/2 BPS solitons in SUSY gauge theory with eight supercharges, where
the so-called Fayet–Iliopoulos (FI) term [47] should be contained in the Lagrangian to realize
the Higgs vacua. The moduli space of kinks and vortices are Kähler [37] because they preserve
four supercharges. Kinks (domain walls) in SUSY U(1) gauge theory with eight supercharges
were firstly found in [48] in the strong gauge coupling (sigma model) limit and have been
developed recently [4, 5, 49–63]. Domain walls in non-Abelian gauge theory have been firstly
discussed in [1, 2, 64] and have been further studied [3, 14, 16, 65]. In particular their moduli
space has been determined to be complex Grassmann manifold [3]. On the other hand, vortices
were found earlier by Abrikosov, Nielsen and Olesen [66] in U(1) gauge theory coupled with
one complex Higgs field, and are now referred as the ANO vortices. Their moduli space was
constructed [67–70]. When the number of Higgs fields is large enough vortices are called semi-
local vortices [71], and their moduli space contains size moduli similarly to lumps [72–74]
or sigma model instantons [75]. Study of vortices in non-Abelian gauge theory, called
non-Abelian vortices, was initiated in [76, 77] and has been extensively discussed [76–89]2.
Especially their moduli space has been determined in the framework of field theory [6] as well
as string theory [76].

One aim of this review is to give a comprehensive understanding of the moduli spaces of
1/2 BPS kinks and vortices. The other aim is to study the moduli spaces of various 1/4 BPS
composite solitons as discussed below3.

Domain walls can make a junction as a 1/4 BPS state [94] and these wall junctions in SUSY
theories with four supercharges were further studied in [95–98] (see [8] for more complete
references). Domain wall junction in SUSY U(1) gauge theory with eight supercharges was
constructed [99] by embedding an exact solution in [95–97]. Finally in [8, 9] the full solutions
of domain wall junction, called domain wall webs, have been constructed in SUSY non-
Abelian gauge theory with eight supercharges. The Hitchin charge is found to be localized
around junction points which is always negative in Abelian gauge theory [8] and can be either

2 Another type of non-Abelian vortices were discussed earlier [90].
3 Composite solitons were also studied in non-supersymmetric field theories [91–93].
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negative or positive in non-Abelian gauge theory [9]. This configuration shares the many
properties with the (p, q) 5-brane webs [100].

As noted above, monopoles and instantons do not live in the Higgs phase. Question is what
happens if monopoles or instantons are put into the Higgs phase. This situation can be realized
by considering SUSY gauge theory with the FI term. In the Higgs phase, magnetic flux from
a monopole is squeezed by the Meissner effect into a vortex, and the configuration becomes a
confined monopole with vortices attached [101–108]. This configuration is interesting because
it gives a dual picture of colour confinement [104]. The confined monopole can be regarded
as a kink in the effective field theory on a vortex [103]. In SUSY theory the configuration
preserves a quarter of eight supercharges and is a 1/4 BPS state [105]. Moreover it was found
[109] in the strong gauge coupling limit that vortices can end on a domain wall to form a
1/4 BPS state, like strings ending on a D-brane. This configuration was further studied in
gauge theory without taking the strong coupling limit [110]. Finally it was found [11] that
all monopoles, vortices and domain walls can coexist as a 1/4 BPS state. Full solutions
constructed in [11] resemble with the Hanany–Witten-type brane configuration [111]. The
negative monopole charge (energy) has also been found [11] in U(1) gauge theory and has
been later called boojum [12, 112].

1/4 BPS composite configurations made of instantons and vortices have also been found
as solutions of self-dual Yang–Mills equation coupled with Higgs fields (the SDYM-Higgs
equation) in d = 5, 6 SUSY gauge theory with eight supercharges [13, 106]. Monopoles in
the Higgs phase can be obtained by putting a periodic array of these instantons along one
space direction inside the vortex world volume [13], while the BPS equation of monopoles is
obtained by the Scherk–Schwarz dimensional reduction [113] of the SDYM-Higgs equation.
All other BPS equations introduced above can be obtained from the SDYM-Higgs equation by
the Scherk–Schwarz and/or ordinary dimensional reductions. The negative instanton charge
(energy) has also been found [13] at intersection of vortices in Abelian gauge theory, and is
called intersecton.

Surprisingly enough this SDYM-Higgs equation was independently found by
mathematicians [114–116] earlier than physicists [13, 106]. Moreover they consider it in
a more general setting, namely with a Kähler manifold in any dimension as a base space where
solitons live and with a general target manifold of scalar fields, unlike ordinary Higgs fields in
linear representation. They call their equation simply as a vortex equation. If we take a base
space as C2 and a target space as a vector space, the vortex equation reduces to our SDYM-
Higgs equation. Whereas if we take a base space as C, the vortex equation reduces to the BPS
equation of vortices [117]. Some integration over the moduli space of the vortex equation
defines a new topological invariant called the Hamiltonian Gromov–Witten invariant [116, 118]
which generalizes the Gromov–Witten invariant and the Donaldson invariant. Therefore
studying the moduli space of the SDYM-Higgs equation is very important in mathematics as
well as physics.

In this review, we focus on the solitons in the Higgs phase; domain walls, vortices and
composite solitons of monopoles/instantons. We solve the half (the hypermultiplet part) of
BPS equations by introducing the moduli matrix. The rest (the vector multiplet part) of BPS
equations is difficult to solve in general. When the number of Higgs fields is larger than
the number of colours, they can be solved analytically in the strong gauge coupling limit in
which the gauge theories reduce to nonlinear sigma models with hyper-Kähler target spaces. In
general cases, we assume that the vector multiplet part of BPS equations produces no additional
moduli parameters. This assumption was rigorously proved in certain situations, for instance
in the case of the ANO vortices [67] and in the case of compact Kähler base spaces [115, 116],
and is now called the Hitchin–Kobayashi correspondence in the mathematical literature.
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In the cases of odd co-dimensions it is a rather difficult problem but it was proved for
domain walls in U(1) gauge theory [5] and the index theorem [12, 52] supports it for the case
of domain walls in non-Abelian gauge theory. Therefore this assumption is correct for the
most cases, and we consider that all moduli parameters in the BPS equations are contained in
the moduli matrix. We concretely discuss the correspondence between the moduli parameters
in the moduli matrix and actual soliton configurations in various cases: (1) domain walls
[1, 2], (2) vortices [6, 7], (3) domain wall junctions or webs [8, 9], (4) composites of
monopoles (boojums), vortices and walls [11], (5) composites of instantons and vortices [13].
We will see that composite solitons in non-Abelian gauge theory have much more variety than
those in Abelian gauge theory. One interesting property which all systems commonly share
is the presence of a negative/positive charge localized around junction points of composite
solitons. The junction charge is always negative in Abelian gauge theory while it can be either
negative or positive in non-Abelian gauge theory.

This review contains many new results. We extend analysis of non-Abelian vortices in [6]
to semi-local non-Abelian vortices which contain non-normalizable zero modes. Relation to
Kähler quotient construction [76] of the vortex moduli space is completely clarified. The half
ADHM construction of vortices is found. We construct effective Lagrangian on non-Abelian
(semi-local) vortices in a compact form, which generalizes the Abelian cases [67–70]. Relation
between moduli parameters in 1/2 BPS states in massless theory and 1/4 BPS states in massive
theory is found; for instance orientational moduli of a non-Abelian vortex are translated to
position moduli of a monopole. We give a complete answer to the question addressed in
[12, 119] whether a confined monopole attached by a vortex ending on a domain wall can
pass through that domain wall by changing moduli or not. Namely we find that a monopole
can pass through a domain wall if and only if positions of vortices attached to the wall from
both sides coincide. If they do not coincide, no monopole exists as a BPS state, suggesting
repulsive force between a monopole and a boojum on a junction point of the vortex and
the wall.

This review is organized as follows. In section 2 we present the model and investigate its
vacua. In section 2.1 we give the Lagrangian of U(NC) gauge theory with NF Higgs fields in
the fundamental representation in spacetime dimensions d = 1 + 1, . . . , 5 + 1. In section 2.2
we analyse the vacuum structure of our model with the massless or massive Higgs fields. In
section 2.3 we discuss the strong gauge coupling limit of the model with large number of
Higgs fields (NF > NC), in which the model reduces to a nonlinear sigma model whose target
space is a hyper-Kähler manifold. In section 3 we discuss 1/2 BPS solitons in the Higgs phase,
namely domain walls in section 3.1 and vortices in section 3.2. In section 3.3 we construct
the effective action on these solitons. In section 4 we discuss 1/4 BPS composite solitons.
First in section 4.1 we present sets of 1/4 BPS equations which we consider in this review. In
section 4.2 we work out solutions of domain wall webs, or junction made of domain walls.
In section 4.3 we work out composite states of monopoles (boojums), vortices and domain
walls. In section 4.4 we work out composite states of instantons and (intersecting) vortices.
In section 4.5 we interpret some of these 1/4 BPS composite solitons as 1/2 BPS solitons on
host 1/2 BPS solitons. Finally section 5 is devoted to a discussion.

2. Model and vacua

2.1. U(NC) gauge theory with NF flavours

We are mostly interested in U(NC) gauge theory in (d − 1) + 1 dimensions with a number of
adjoint scalar fields �p and NF flavours of scalar fields in the fundamental representation as
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an NC × NF matrix H

L = Lkin − V, (2.1)

Lkin = Tr

(
− 1

2g2
FµνF

µν +
1

g2
Dµ�pDµ�p + DµH(DµH)†

)
, (2.2)

where the covariant derivatives and field strengths are defined as Dµ�p = ∂µ�p +
i[Wµ,�p],DµH = (∂µ + iWµ)H,Fµν = −i[Dµ,Dν]. Our convention for the metric is
ηµν = diag(+,−, . . . ,−). The scalar potential V is given in terms of diagonal mass matrices
Mp and a real parameter c as

V = Tr

[
g2

4
(c1 − HH †)2 + (�pH − HMp)(�pH − HMp)†

]
. (2.3)

This Lagrangian is obtained as the bosonic part of the Lagrangian with eight supercharges by
ignoring one of the scalars in the fundamental representation: H 1 ≡ H,H 2 = 0. Although the
gauge couplings for U(1) and SU(NC) are independent, we have chosen these to be identical to
obtain simple solutions classically. The real positive parameter c is called the Fayet–Iliopoulos
(FI) parameter, which can appear in supersymmetric U(1) gauge theories [47]. Since we
are interested in the Higgs phase, it is crucial to have this parameter c. We use a matrix
notation for these component fields, such as Wµ = WI

µTI , where TI

(
I = 0, 1, 2, . . . , N2

C − 1
)

are matrix generators of the gauge group G in the fundamental representation satisfying
Tr(TITJ ) = 1

2δIJ , [TI , TJ ] = ifIJ
KTK with T 0 as the U(1) generator. In order to embed this

Lagrangian into a supersymmetric gauge theory with eight supercharges, spacetime dimensions
are restricted as d � 6 and the number of adjoint scalars and mass matrices are given by 6 − d

(p = 1, . . . , 6 − d), since these theories can be obtained by dimensional reductions with
possible twisted boundary conditions (the Scherk–Schwarz dimensional reduction [113]) as
described below.

Let us note that a common mass Mp = mp1 for all flavours can be absorbed into a shift of
the adjoint scalar field �p, and has no physical significance. In this review, we assume either
massless hypermultiplets, or fully non-degenerate mass parameters mpA �= mpB , for A �= B

unless stated otherwise. Then the flavour symmetry SU(NF) for the massless case reduces in
the massive case to

GF = U(1)
NF−1
F , (2.4)

where U(1)F corresponding to common phase is gauged by U(1)G local gauge symmetry.
Let us discuss supersymmetric extension of the Lagrangian given by equations (2.1)–(2.3).

(Those who are unfamiliar with supersymmetry can skip the rest of this subsection and can
go to section 2.2.) Gauge theories with eight supercharges are most conveniently constructed
first in 5+1 dimensions and theories in lower dimensions follow from dimensional reductions.
The gamma matrices satisfy {�M,�N } = 2ηMN , and the totally antisymmetric product of
the gamma matrices �M, . . . , �N are denoted by �M···N . The charge conjugation matrix C is
defined by C−1�MC = �T

M and satisfy CT = −C. The building blocks for gauge theories
with eight supercharges are vector multiplets and hypermultiplets. The vector multiplet in
5 + 1 dimensions consists of a gauge field WI

M (M = 0, 1, 2, 3, 4, 5) for generators of gauge
group I, an SU(2)R triplet of real auxiliary fields Y I

a , and an SU(2)R doublet of gauginos λiI

(i = 1, 2) which are an SU(2)-Majorana Weyl spinor, namely �7λ
i = λi and λi = Cεij (λ̄j )

T .
Here �7 is defined by �7 = �012345 and C is the charge conjugation matrix in 5+1 dimensions.
All these fields are in the adjoint representation of G.

We have hypermultiplets as matter fields, consisting of an SU(2)R doublet of complex
scalar fields HirA and Dirac field ψrA (hyperino) whose chirality is �7ψ

rA = −ψrA. Colour
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(flavour) indices are denoted as r, s, . . . (A,B, . . .). The hypermultiplet in 5 + 1 dimensions
does not allow (finite numbers of) auxiliary fields and superalgebra closes only on-shell,
although the vector multiplet has auxiliary fields.

We shall consider a model with minimal kinetic terms for vector and hypermultiplets. In
5 + 1 dimensions, the model allows only two types of parameters, gauge couplings gI and a
triplet of the Fayet–Iliopoulos (FI) parameters ζa with a = 1, 2, 3. There exist the triplets of
the FI parameters as many as U(1) factors of gauge group in general. To distinguish different
gauge couplings for different factor groups, we retained suffix I for gI . The bosonic part of
the Lagrangian is given by

L6 = − 1

4g2
I

F I
MNF IMN + (DMHirA)∗DMHirA + Laux, (2.5)

Laux = 1

2g2
I

(
Y I

a

)2 − ζaY
0
a + (H irA)∗(σ a)i j (Ya)

r
sH

jsA. (2.6)

The equation of motion for auxiliary fields Y I
a gives

Y I
a = 1

g2
I

[
ζaδ

I
0 − (H irA)∗(σa)

i
j (TI )

r
sH

jsA
]
. (2.7)

The supersymmetry transformation for the spinor fields in 5 + 1 dimensions are given in
terms of an SU(2)-Majorana Weyl spinor parameter εi satisfying εi = Cεij (ε̄j )

T, �7ε
i = +εi

δελ
i = 1

2�MNFMNεi + Ya(iσa)
i
j ε

j , δεψ
rA = −

√
2i�MDMHirAεij ε

j . (2.8)

We can obtain the ((d − 1) + 1)-dimensional (d < 6) supersymmetric gauge theory
with eight supercharges, by performing the Scherk–Schwarz (SS) [113] and/or the trivial
dimensional reductions (6 − d)-times from the (5 + 1)-dimensional theory (2.6), after
compactifying the pth (p = 5, 4, . . . , d) direction to S1 with radius Rp. The twisted boundary
condition for the SS dimensional reduction along the xp-direction is given by

HiA(xµ, xp + 2πRp) = HiA(xµ, xp) eiαpA, (|αpA| � 2π), (2.9)

where µ is the spacetime index in (d −1)+ 1 dimensions. We have used the flavour symmetry
(2.4) commuting with supersymmetry for this twisting and so supersymmetry is preserved,
unlike twisting by symmetry not commuting with supersymmetry often used in the context in
which case supersymmetry is broken. If we consider the effective Lagrangian at sufficiently
low energies, we can discard an infinite tower of the Kaluza–Klein modes and retain only the
lightest mass field as a function of the ((d − 1) + 1)-dimensional spacetime coordinates

Wµ(xµ, xp) → Wµ(xµ), Wp(xµ, xp) → −�p(xµ), (2.10)

HiA(xµ, xp) → 1∏
p

√
2πRp

HiA(xµ) exp

(
i
∑

p

mpAxp

)
, mpA ≡ αpA

2πRp

. (2.11)

Integrating the (5 + 1)-dimensional Lagrangian in equation (2.6) over the xp-coordinates and
introducing the auxiliary fields F rA

i for hypermultiplets, we obtain the ((d−1)+1)-dimensional
effective Lagrangian

Ld = − 1

4g2
I

F I
µνF

Iµν +
1

2g2
I

Dµ�I
pDµ�I

p + (DµH irA)∗DµH irA

− (H irA)∗[(�p − mpA)2]r sH
isA + Laux, (2.12)
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Laux = 1

2g2
I

(
Y I

a

)2 − ζaY
0
a + (H irA)∗(σ a)i j (Ya)

r
sH

jsA +
(
F rA

i

)∗
F rA

i , (2.13)

where we have redefined the gauge couplings and the FI parameters in (d − 1) + 1 dimensions
from 5 + 1 dimensions as g2

I → (∏
p2πRp

)
g2

I , ζa → ζa/
(∏

p2πRp

)
. We obtain (6 − d)

adjoint real scalar fields �p and (6−d) real mass parameters for hypermultiplets in (d −1)+1
dimensions. The SU(2)R symmetry allows us to choose the FI parameters to lie in the third
direction without loss of generality ζa = (0, 0, c

√
NC/2), c > 0, although we cannot reduce

all the FI parameters to the third direction if there are more FI parameters. Since the equations
of motion for auxiliary fields are given by (2.7) and F rA

i = 0, we obtain the on-shell version
of the bosonic part of the Lagrangian with the scalar potential V as given in equation (2.2).
However, we ignored in equation (2.2) one of the hypermultiplet scalars H 2 = 0, since H 2

vanishes for almost all soliton solutions as we see in the following sections.

2.2. Vacua

SUSY vacuum is equivalent to the vanishing vacuum energy, which requires both contributions
from vector and hypermultiplets to V in equation (2.2) to vanish. The SUSY condition Ya = 0
for vector multiplets can be rewritten as

H 1H 1† − H 2H 2† = c1NC , H 2H 1† = 0. (2.14)

This condition implies that some of hypermultiplets have to be non-vanishing. Since the
non-vanishing hypermultiplets in the fundamental representation breaks gauge symmetry, we
call these vacua as Higgs branch of vacua.

In the case of massless theory, the vanishing contribution from the hypermultiplet gives
for each index A

(�p)r sH
isA = 0, (2.15)

which requires �p = 0 for all p. Therefore we find that the Higgs branches for the massless
hypermultiplets are hyper-Kähler quotient [38, 39] given by Mvac = {HirA|Y I

a = 0}/G,
where G denotes the gauge group. In our specific case of U(NC) gauge group with NF(>NC)

massless hypermultiplets in the fundamental representation, the moduli space is given by the
cotangent bundle over the complex Grassmann manifold [38]

MMp=0
vac � T ∗GNF,NC � T ∗

[
SU(NF)

SU(NC) × SU(NF − NC) × U(1)

]
. (2.16)

The real dimension of the Higgs branch is 4NC(NF − NC).
In the massive theory, the vanishing contribution to vacuum energy from hypermultiplets

gives

(�p − mpA1)r sH
isA = 0, (2.17)

for each index A. This is satisfied by choosing the adjoint scalar �p to be diagonal matrices
whose rth elements are specified by the the non-degenerate mass mpAr

for the hypermultiplet
with non-vanishing r colour and Ar flavour

H 1rA = √
cδAr

A, H 2rA = 0, �p = diag
(
mpA1 ,mpA2 , . . . , mpANC

)
. (2.18)

Therefore we find that the Higgs branch of vacua of the massless case is lifted by masses except
for fixed points of the tri-holomorphic U(1) Killing vectors [40] induced by the U(1) actions in
equation (2.9) or (2.4), when we introduce masses in lower dimensions by the SS dimensional
reductions. Introducing non-degenerate masses, only NF!/[NC!× (NF −NC)!] discrete points
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out of the massless moduli space T ∗GNF,NC remain as vacua [41]. These discrete vacua are
often called colour–flavour locking vacua. In the particular case of NF = NC, we have the
unique vacuum up to gauge transformations. Throughout this review the vacuum given by
equation (2.18) is labelled by

〈A1, A2, . . . , ANC〉 (2.19)

or briefly by 〈{Ar}〉. This kind of labels may also be used for defining an NC × NC minor
matrix H 〈{Ar }〉 from the NC × NF matrix H as (H 〈{Ar }〉)qs = HqAs .

2.3. Infinite gauge coupling and nonlinear sigma models

SUSY gauge theories reduce to nonlinear sigma models in the strong gauge coupling limit
g2 → ∞. With eight supercharges, they become hyper-Kähler (HK) nonlinear sigma models
[36, 37, 40] on the Higgs branch [42, 43] of gauge theories as their target spaces. This
construction of HK manifold is called an HK quotient [38, 39]. If hypermultiplets are
massless, the HK nonlinear sigma models receive no potentials. If hypermultiplets have
masses, the models are called massive HK nonlinear sigma models which possess potentials
as the square of tri-holomorphic Killing vectors on the target manifold [40]. Most vacua are
lifted with this potential leaving some discrete points as vacua, which are characterized by
fixed points of the Killing vector. In our case of U(NC) gauge theory with NF hypermultiplets
in the fundamental representation, the model reduces to the massive hyper-Kähler nonlinear
sigma model on T ∗GNF,NC in equation (2.16). With our choice of the FI parameters, H 1

parametrizes the base manifold GNF,NC , whereas H 2 its cotangent space. Thus we obtain the
Kähler nonlinear sigma model on the Grassmann manifold GNF,NC if we set H 2 = 0 [44].

Let us give the concrete Lagrangian of the nonlinear sigma models. Since the gauge kinetic
terms for Wµ and �p (and their superpartners) disappear in the limit of infinite coupling, we
obtain the Lagrangian

Lg→∞ = Tr[(DµH i)†DµH i] + Tr[(H i†�p − MpHi†)(�pH i − HiMp)]. (2.20)

The auxiliary fields Y a serve as Lagrange multiplier fields to give constraints (2.14) as their
equations of motion. Equation (2.20) gives equations of motion for Wµ and �p as auxiliary
fields expressible in terms of hypermultiplets

WI
µ = i(A−1)IJ Tr[(H i∂µH i† − ∂µH iH i†)TJ ], (2.21)

�I
p = 2(A−1)IJ Tr(H i†TJ H iMp), (2.22)

where (A−1)IJ is an inverse matrix of AIJ defined by AIJ = Tr(H i†{TI , TJ }Hi). As a
result the Lagrangian (2.20) with the constraints (2.14) gives the nonlinear sigma model, after
eliminating Wµ,�p. This is the HK nonlinear sigma model [38, 41] on the cotangent bundle
over the complex Grassmann manifold in equation (2.16). The isometry of the metric, which
is the symmetry of the kinetic term, is SU(NF), although it is broken to its maximal Abelian
subgroup U(1)NF−1 by the potential. In the massless limit Mp = 0, the potential V vanishes
and the whole manifold becomes vacua, the Higgs branch of our gauge theory. Turning on the
hypermultiplet masses, we obtain the potential allowing only discrete points as SUSY vacua
[41], which are fixed points of the invariant subgroup U(1)NF−1 of the potential. The number
of vacua is NF!/[NC!(NF − NC)!], which is the same as the case of the finite gauge coupling.

In the case of NC = 1 the target space reduces to the cotangent bundle over the compact
projective space CP NF−1, T ∗CP NF−1 = T ∗[SU(NF)/SU(NF−1)×U(1)] [45]. This is a toric
HK (or hypertoric) manifold and the massive model has discrete NF vacua [50]. If NF = 2
the target space T ∗CP 1 is the simplest HK manifold, the Eguchi–Hanson space [46].



R324 Topical Review

From the target manifold (2.16) one can easily see that there exists a duality between
theories with the same number of flavours and two different gauge groups in the case of the
infinite gauge coupling [41, 42]:

U(NC) ↔ U(NF − NC). (2.23)

This duality holds for the entire Lagrangian of the nonlinear sigma models.

3. 1/2 BPS solitons

3.1. Walls

3.1.1. BPS equations for domain walls. Domain walls are static BPS solitons of co-dimension
one interpolating between different discrete vacua like equation (2.18). In order to obtain
domain wall solutions we require that all fields should depend on one spatial coordinate, say
y ≡ x2. We also set H 2 = 0 and define H ≡ H 1. We have shown in appendix B in [2] that
the condition H 2 = 0 is deduced in our model (but it is not always the case in general models
[4]). The Bogomol’nyi completion of the energy density for domain walls can be performed
as

E = 1

g2
Tr

(
Dy� − g2

2
(c1NC − HH †)

)2

+ Tr[(DyH + �H − HM)(DyH + �H − HM)†]

+ c∂yTr � − ∂y{Tr[(�H − HM)H †]}. (3.1)

This energy bound is saturated when the BPS equations for domain walls are satisfied

DyH = −�H + HM, Dy� = g2

2
(c1NC − HH †), (3.2)

and the energy per unit volume (tension) of domain walls interpolating between the vacuum
〈{Ar}〉 at y → +∞ and the vacuum 〈{Br}〉 at y → −∞ is obtained as

Tw =
∫ +∞

−∞
dy E = c[Tr�]+∞

−∞ = c

(
NC∑
k=1

mAk
−

NC∑
k=1

mBk

)
. (3.3)

The tension Tw depends only on boundary conditions at spatial infinities y → ±∞ and is a
topological charge.

There exists one dimensionless parameter g
√

c/|�m| in our system. Depending on
whether the gauge coupling constant is weak (g

√
c � |�m|) or strong (|�m| � g

√
c),

domain walls have different internal structure. Let us review an internal structure of U(1)

gauge theory [110]. Walls have a three-layer structure shown in figure 1(a) in weak gauge
coupling. The outer two thin layers have the same width of order Lo = 1/g

√
c and the internal

fat layer has a width of order Li = |�m|/g2c(�Lo). The wall in U(1) gauge theory with
NF = 2 interpolating between the vacuum 〈1〉(H = √

c(1, 0),� = m1) at y → −∞ and the
vacuum 〈2〉(H = √

c(0, 1),� = m2) at y → +∞ is shown in figure 1(a). The first (second)
flavour component of the Higgs field exponentially decreases in the left (right) outer layer so
that the entire U(1) gauge symmetry is restored in the inner core.

In the strong gauge coupling (g
√

c � |�m|) the internal structure becomes simpler for
both Abelian and non-Abelian cases. The middle layer disappears and two outer layers of the
Higgs phase grow with the total width being of order 1/|�m|.

An internal structure becomes important at finite or weak gauge coupling, for instance
when we discuss domain wall junction [8, 9] in section 4.2 or Skyrmion as instantons inside
domain walls [16].
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(a) (b)

Figure 1. Internal structures of the domain walls: (a) a three-layer structure if g
√

c � |�m|,
(b) a single-layer structure if g

√
c � |�m|.

3.1.2. Wall solutions and their moduli space. Let us solve the BPS equations (3.2). Defining
an N by N invertible matrix S(y) ∈ GL(NC, C) by the ‘Wilson line’

S(y) ≡ P exp

(∫
dy(� + iWy)

)
(3.4)

with P denoting the path ordering, we obtain the relation

� + iWy = S−1(y)∂yS(y). (3.5)

Using S the first equation in (3.2) can be solved as

H = S−1(y)H0 eMy. (3.6)

Defining a U(NC) gauge invariant

� ≡ SS†, (3.7)

the second equation in (3.2) can be rewritten as

∂y(�
−1∂y�) = g2(c − �−1H0 e2MyH0

†). (3.8)

We call this the master equation for domain walls. This equation is difficult to solve analytically
in general4. However it can be solved immediately as

�g→∞ ≡ �0 = c−1H0 e2MyH0
† (3.9)

in the strong gauge coupling limit g2 → ∞, in which the model reduces to the HK nonlinear
sigma model. Some exact solutions are also known for particular finite gauge coupling with
restricted moduli parameters [61]. Existence and uniqueness of solutions of (3.8) were proved
for the U(1) gauge group [5]. One can expect from the index theorem [12] that it holds for
the U(NC) gauge group.

Therefore we conclude that all moduli parameters in wall solutions are contained in the
moduli matrix H0. However one should note that two sets (S,H0) and (S ′,H0

′) related by the
V-transformation

S ′ = V S, H0
′ = V H0, V ∈ GL(NC, C) (3.10)

give the same physical quantities Wy and �, where the quantity � transforms as

�′ = V �V † (3.11)

and equation (3.8) is covariant. Thus we need to identify these two as (S,H0) ∼ (S ′,H ′
0),

which we call the V-equivalence relation. The moduli space of the BPS equations (3.2) is
4 Non-integrability of this equation has been addressed recently in [120] by using the Painlevé test.
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found to be the complex Grassmann manifold

Mtotal
wall � {H0|H0 ∼ V H0, V ∈ GL(NC, C)}

� GNF,NC � SU(NF)

SU(NC) × SU(NF − NC) × U(1)
, (3.12)

with dimension dimMtotal
wall = 2NC(NF − NC). We did not put any boundary conditions at

y → ±∞ to get the moduli space (3.12). Therefore it contains configurations with all possible
boundary conditions, and can be decomposed into the sum of topological sectors

Mtotal
wall =

∑
BPS

M〈A1,...,ANC 〉←〈B1,...,BNC 〉. (3.13)

Here each topological sector M〈A1,...,ANC 〉←〈B1,...,BNC 〉 is specified by the boundary conditions,
〈A1, . . . , ANC〉 at y → +∞ and 〈B1, . . . , BNC〉 at y → −∞. It is interesting to observe
that this space also contains vacuum sectors, Br = Ar for all r, as isolated points because
these states of course satisfy the BPS equations (3.2). More explicit decomposition will be
explained in the next subsection. We often call Mtotal

wall the total moduli space for domain walls.
One has to note that we cannot define the usual Manton’s metric on the total moduli space
because it is made by gluing different topological sectors. The Manton’s metric is defined in
each topological sector.

We have seen that the total moduli space of domain walls is the complex Grassmann
manifold (3.12). On the other hand, the moduli space of vacua for the corresponding model
with massless hypermultiplet is the cotangent bundle over the complex Grassmann manifold
(2.16). This is not just a coincidence. It has been shown in [4] that the moduli space of domain
walls in a massive theory is a special Lagrangian submanifold the moduli space of vacua in
the corresponding massless theory.

For any given moduli matrix H0 the V -equivalence relation (3.10) can be uniquely fixed
to obtain the following matrix, called the standard form:

H0 =

A1 A2 ANC ← B1 BNC B2
1 ∗ · · · ∗ ev1 O

1 ∗ · · · ∗ ev2

...

O 1 ∗ · · · ∗ evNC

 ,
(3.14)

where Ar is ordered as Ar < Ar+1 but Br is not. Here in the rth row the left-most nonzero
(r, Ar)-elements are fixed to be one, the right-most nonzero (r, Br)-elements are denoted
by evr (∈ C∗ ≡ C − {0} � R × S1). Some elements between them must vanish to fix V -
transformation (3.10), but some of them denoted by ∗(∈ C) are complex parameters which
can vanish. (See appendix B of [2] for how to fix V -transformation completely.) Substituting
the standard form (3.14) into solution (3.6) one finds that configuration interpolates between
〈A1, . . . , ANC〉 at y → +∞ and 〈B1, . . . , BNC〉 at y → −∞. In order to obtain the topological
sector M〈A1,...,ANC 〉←〈B1,...,BNC 〉 we have to gather matrices in the standard form (3.14) with
all possible ordering of Br . We can show that the generic region of the topological sector
M〈A1,...,ANC 〉←〈B1,...,BNC 〉 is covered by the moduli parameters in the moduli matrix with ordered
Br(< Br+1). Therefore its complex dimension is calculated to be

dimC M〈{Ar }〉←〈{Br }〉 =
NC∑
r=1

(Br − Ar). (3.15)

The maximal number of domain walls is realized in the maximal topological sector
M〈1,2,...,NC〉←〈NF−NC+1,...,NF−1,NF〉 with complex dimension NC(NF − NC).
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When a moduli matrix contains only one modulus, like

H0 =
1 0 0 0 0 0

0 1 0 0 er 0
0 0 1 0 0 0

 , (3.16)

we call the configuration generated by this matrix as a single wall. In particular, we call a single
wall generated by a moduli matrix (3.16) with no zeros between 1 and er as an elementary
wall. Whereas a single wall with some zeros between 1 and er is called a composite wall,
because it can be broken into a set of elementary walls with a moduli deformation.

3.1.3. Properties. In order to clarify the meaning of the moduli parameters we explain how
to estimate the positions of domain walls from the moduli matrix H0 according to appendix A
of [2]. We also show explicit decomposition (3.13) of the total moduli space (3.12) by using
simple examples in this subsection.

Using � in (3.7) the energy density E of domain wall, the integrand in equation (3.3), can
be rewritten as

E = c∂y Tr � +
1

g2

(
∂4
y term

) = c∂2
y (log det �) +

1

g2

(
∂4
y term

)
. (3.17)

The ∂4
y term can be neglected when we discuss wall positions. Apart from the core of domain

wall, � approaches to �0 = c−1H0 e2MyH
†
0 in equation (3.9). There the energy density (3.17)

can be expressed by the moduli matrix as

E ≈ c∂2
y log det

(
1

c
H0 e2MyH

†
0

)
= c∂2

y log
∑
〈{Ar }〉

[
|τ 〈{Ar }〉|2 exp

(
2

NC∑
r=1

mAr
y

)]
. (3.18)

Here the sum is taken over all possible vacua 〈{Ar}〉 = 〈A1, A2, . . . , ANC〉 and τ 〈{Ar }〉 is defined
by

τ 〈{Ar }〉 ≡ exp(a〈{Ar }〉 + ib〈{Ar }〉) ≡ det H 〈{Ar }〉
0 (3.19)

with (H
〈{Ar }〉
0 )st = H

sAt

0 an NC by NC minor matrix of H0. It is useful to define a weight of a
vacuum 〈{Ar}〉 as e2W 〈{Ar }〉

with

W 〈{Ar }〉(y) ≡
NC∑
r=1

mAr
y + a〈{Ar }〉, (3.20)

and an average magnitude of the vacua by

exp 2〈W〉 ≡
∑
〈{Ar }〉

exp 2W 〈{Ar }〉. (3.21)

Then the energy density can be rewritten as

E ≈ c∂2
y 〈W〉 = c

2
∂2
y log

∑
〈{Ar }〉

exp 2W 〈{Ar }〉. (3.22)

This approximation is valid away from the core of domain walls but not good near their core.
This expression holds exactly in the whole region at the strong gauge coupling limit.
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y

〈W〉

W〈1〉 W〈2〉

y12

Figure 2. Comparison of the profile of 〈W〉,W〈1〉,W〈2〉 as functions of y. Linear functions W〈A〉
are good approximations in their respective dominant regions.

It may be useful to order τ ’s according to the sum of masses of hypermultiplets
corresponding to the labels of flavours, like

{. . . , τ 〈{Ar }〉, . . . , τ 〈{Br }〉, . . .}, so that
NC∑
r=1

mAr
>

NC∑
r=1

mBr
. (3.23)

When only one τ is nonzero with the rests vanishing as

{0, . . . , 0, τ 〈{Ar }〉, 0, . . . , 0}, (3.24)

only one weight e2W 〈{Ar }〉
survives and the logarithm log det � inside the y-derivative in

equation (3.22) becomes linear with respect to y. Therefore the energy (3.22) vanishes
and the configuration is in a SUSY vacuum. Next let us consider general situation. In a region
of y such that one W 〈{Ar }〉 is larger than the rests, expW 〈{Ar }〉 is dominant in the logarithm in
equation (3.22). Therefore the logarithm log det � inside differentiations in equation (3.22)
is almost linear with respect to y, the energy (3.22) vanishes and configuration is close to
a SUSY vacuum in that region of y. The energy does not vanish only when two or more
W 〈{Ar }〉’s are comparable. If two W 〈{Ar }〉’s are comparable and are larger than the rests, there
exists a domain wall. This is a key observation throughout this review.

We now discuss the U(1) gauge theory in detail. There exist N vacua, 〈A〉 with
A = 1, . . . , N . The moduli matrix and weight are

H0 = √
c(τ 〈1〉, τ 〈2〉, . . . , τ 〈NF〉), (3.25)

exp(2W 〈A〉(y)) = exp 2(mAy + a〈A〉), (3.26)

respectively, with τ 〈A〉 ∈ C and a〈A〉 = Re(log τ 〈A〉). Here τ 〈A〉 are regarded as the
homogeneous coordinates of the total moduli space CP NF−1. Any single wall is generated by
a moduli matrix (3.26) with only two non-vanishing τ ’s. If these two are a nearest pair, an
elementary wall is generated.

Example 1 (single wall). We now restrict ourselves to the simplest case, NF = 2. This model
contains two vacua 〈1〉 and 〈2〉 allowing one domain wall connecting them. The weights
of these vacua are e2W 〈1〉

and e2W 〈2〉
, respectively. When one weight e2W 〈A〉

is larger than the
other, configuration approaches to the vacuum 〈A〉 as seen in figure 2. Energy density is
concentrated around the region where both the weights are comparable. Therefore the wall
position is determined by equating them,

y = −a〈1〉 − a〈2〉

m1 − m2
= − log|τ 〈1〉/τ 〈2〉|

m1 − m2
. (3.27)

We also have the U(1) modulus in the phase of τ 〈1〉/τ 〈2〉 which does not affect the shape
of the wall. This is a Nambu–Goldstone mode coming from the flavour U(1) symmetry
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Figure 3. CP 1 and the potential V . The base space of T ∗CP 1, CP 1 � S2, is displayed. This
model contains two discrete vacua denoted by N and S. The potential V is also displayed on the
right of the CP 1. It admits a single wall solution connecting these two vacua expressed by a
curve. The U(1) isometry around the axis connecting N and S is spontaneously broken by the wall
configuration.

spontaneously broken by the wall configuration. The moduli space of single wall is a cylinder
Mk=1 � R × S1 � C∗ ≡ C − {0}. This is non-compact. In the limit of a〈1〉 → −∞ or
a〈2〉 → −∞ the configuration becomes a vacuum. These limits naturally define how to add
two points, which correspond to the two vacuum states, to Mk=1. We thus obtain the total
moduli space as a compact space:

CP 1 � S2 = Mk=1 + two points = R × S1 + two points. (3.28)

This is an explicit illustration of the decomposition (3.13) of the total moduli space.
In the strong gauge coupling limit, the model reduces to a nonlinear sigma model on

T ∗CP 1, the Eguchi–Hanson space, allowing a single domain wall [48, 54, 55]. In figure 3 we
display the base space CP 1 of the target space, the potential V on it, two vacua N and S, and
a curve in the target space mapped from a domain wall solution connecting these vacua.

Example 2 (double wall (appendix A of [2]). Let us switch to the second simplest case,
NF = 3. This model contains three vacua 〈1〉, 〈2〉 and 〈3〉 whose weights are e2W 〈1〉

, e2W 〈2〉
and

e2W 〈3〉
, respectively. This model admits three single walls generated by the moduli matrices

H0 = √
c(τ 〈1〉, τ 〈2〉, 0),

√
c(0, τ 〈2〉, τ 〈3〉),

√
c(τ 〈1〉, 0, τ 〈3〉). (3.29)

We now show that the first two are elementary wall while the last is not elementary but a
composite of the first two, as defined below equation (3.16). Let us consider the full moduli
matrix H0 = √

c(τ 〈1〉, τ 〈2〉, τ 〈3〉). By equating two of the three weights we have three solutions
of y:

y12 = −a〈1〉 − a〈2〉

m1 − m2
, y23 = −a〈2〉 − a〈3〉

m2 − m3
, y13 = −a〈1〉 − a〈3〉

m1 − m3
. (3.30)

Not all of these correspond to wall positions. To see this we draw the three linear functions
W 〈A〉 and 〈W〉 = 1/2 log(e2W 〈1〉(y) + e2W 〈2〉(y) + e2W 〈3〉(y)) in figure 4 according to cases (a)
y23 < y12 and (b) y12 < y23. We observe that there exist two domain walls in case (a)
y23 < y12 but only one wall in case (b) y12 < y23. By taking a limit a〈1〉 → −∞ (e2W 〈1〉 → 0)

or a〈3〉 → −∞ (e2W 〈3〉 → 0), we obtain a configuration of a single wall located at y23 or
y12, respectively. They are configurations of elementary walls generated by the first two
moduli matrices in equation (3.29). The configuration (a) in figure 4 is the case that these two
walls approach each other with finite distance. If these two walls get close further we obtain
the configuration (b) in figure. This looks almost a single wall. In the limit a〈2〉 → −∞
(e2W 〈2〉 → 0), the configuration really becomes a single wall generated by the last moduli
matrix of (3.29). Therefore the last one generates a composite wall made of two elementary
walls compressed. This is a common feature when Abelian domain walls interact.
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〈W〉
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W〈3〉y13
y12y23
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〈W〉
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W〈3〉y13
y23

y12

(a) (b)

Figure 4. Comparison of the profile of 〈W〉,W〈1〉,W〈2〉 as functions of y. 〈W〉 connects smoothly
dominant linear functions W〈A〉 in respective regions: (a) y23 < y12 and (b) y23 > y12.

The moduli space of the double wall is Mk=2 � C∗ × C with C∗ denoting the overall
position and phase and C denoting relative ones. This is non-compact. In the two limits
a〈1〉 → −∞ and a〈3〉 → −∞ which we took above, the configuration reach two single-wall
sectors Mk=1

(1) and Mk=1
(2) both of which are isomorphic to C∗. These limits naturally define

gluing the two single-wall sectors to the double wall sector Mk=2. Finally the three vacuum
sectors are added to it, resulting the total moduli space CP 2:

CP 2 = Mk=2 + Mk=1
(1) + Mk=1

(2) + three points. (3.31)

This is another explicit illustration of the decomposition (3.13) of the total moduli space.
Note that the function log

∑
〈A〉 e2W 〈A〉

in equation (3.22) can be approximated by
piecewise linear function obtained by the largest weight W 〈A〉 in each region of y, as seen in
(4). This is known as tropical geometry in the mathematical literature.

The U(1) gauge theory (NC = 1) with NF flavours admits the NF vacua and the NF − 1
walls which are ordered.

CP NF−1 =
NF−1∑
k=1

∑
ik

Mk
(ik)

. (3.32)

We now make a comment on symmetry properties of domain walls. In the Abelian case with
NF, the number of walls are NF − 1. Each wall carries approximate Nambu–Goldstone modes
for translational invariance if they are well separated. Only the overall translation is an exact
Nambu–Goldstone mode. They carry Nambu–Goldstone modes for spontaneously broken
U(1)NF−1 flavour symmetry.

Next let us turn our attention to non-Abelian gauge theory (NC > 1). We have
defined single walls, elementary walls and composite walls below equation (3.16). However
these definitions are not covariant under the V -transformation (3.10). They can be defined
covariantly as follows. To this end we first should note that τ ’s defined in equation (3.19)
are the so-called Plücker coordinates of the complex Grassmann manifold. These coordinates
{τ 〈{Ar }〉} are not independent but satisfy the so-called Plücker relations

NC∑
k=0

(−1)kτ 〈A1···ANC−1Bk〉τ 〈B0···Bk ···BNC 〉 = 0 (3.33)

where the bar under Bk denotes removing Bk from 〈B0 · · · Bk · · · BNC〉. Among these equations,
only NFCNC − 1 − NC(NF − NC) equations give independent constraints with reducing the
number of independent coordinates to the complex dimension NC(NF −NC) of the Grassmann
manifold.
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Using the Plücker coordinates, single walls are defined to be configurations generated
by two non-vanishing τ ’s with the rests vanishing. These are configurations interpolating
between two vacua 〈· · ·A〉 and 〈· · ·B〉 (A �= B), where underlined dots denote the same set
of labels. We can show that the Plücker relations (3.33) do not forbid these configurations.
If the labels are different by one the configurations are said to be elementary walls, whereas
if they are different by more than one the configurations are said to be composite walls. On
the other hand, the Plücker relations (3.33) forbid configurations to interpolate between two
vacua whose labels have two or more different integers, such as 〈· · ·123〉 and 〈· · ·456〉.

Example. Let us consider the simplest model of NF = 4 and NC = 2 with one nontrivial
Plücker relation. This model contains the six vacua, 〈12〉, 〈13〉, 〈14〉, 〈23〉, 〈24〉 and 〈34〉. The
Plücker relation (3.33) becomes

τ 〈12〉τ 〈34〉 − τ 〈13〉τ 〈24〉 + τ 〈14〉τ 〈23〉 = 0. (3.34)

This allows, for example, τ 〈12〉 and τ 〈13〉 to be non-vanishing with the rests vanishing. So we
have a single wall connecting 〈12〉 and 〈13〉. However, when all τ ’s except for τ 〈12〉 and τ 〈34〉

vanish, the Plücker relation (3.34) reduces to τ 〈12〉τ 〈34〉 = 0, which requires one of them also
to vanish. We thus see that there exits no domain wall interpolating between two vacua 〈12〉
and 〈34〉.

Configurations of the single domain walls can also be estimated by comparing weights
of the two vacua as those in the Abelian gauge theory: The domain wall interpolating 〈· · ·A〉
and 〈· · ·B〉 is given by W 〈···A〉 = W 〈···B〉. Then we again obtain the same transition as
equation (3.27)

y = −a〈···A〉 − a〈···B〉

mA − mB

. (3.35)

Of course the Plücker relations (3.34) can forbid a set of three or more than three τ ’s to be
non-vanishing with the rests vanishing. In other words, if it is allowed by the Plücker relations
(3.34), that configuration can be realized.

We make several comments on characteristic properties of domain walls in non-Abelian
gauge theory.

Unlike the case of U(1) gauge theory, all of moduli are not (approximate) Nambu–
Goldstone (NG) modes. There exist NC(NF − NC) walls. They carry approximate NG modes
for translational symmetry with the overall being an exact NG mode, if they are well separated.
Only NF − 1 phases are NG modes for spontaneously broken U(1)NF−1 flavour symmetry.
However the rests NC(NF − NC) − NF + 1 are not related with any symmetry, but are required
by unbroken SUSY. These additional modes are called quasi-NG modes in the context of
spontaneously broken global symmetry with keeping SUSY [44, 121].

It may be worth pointing out that a gauge field Wy in co-dimensional direction can exist
in wall configurations in non-Abelian gauge theory, unlike the Abelian cases where it can be
eliminated by a gauge transformation. See [2] in detail.

In the strong coupling limit exact duality relation holds, NC ↔ NF−NC in equation (2.23).
This relation can be promoted to wall solutions as shown in appendix D in [2]. Although this
duality is not exact for finite coupling there still exists a one-to-one dual map by the relation

H0H̃
†
0 = 0 (3.36)

among the moduli matrix H0 in the original theory and the (NF − NC) × NF moduli matrix
H̃0 of the dual theory. This relation determines H̃0 uniquely from H0 up to the V -equivalence
(3.10).
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3.1.4. D-brane configuration. We found the ordering rules of non-Abelian domain walls
in [2]. In this subsection we show that these rules can be obtained easily from D-brane
configuration in string theory [3]. This configuration was obtained by generalizing that for
the U(1) gauge theory considered in [49]. We restrict dimensionality to d = 3 + 1 in this
subsection, but we can consider from dimension d = 1 + 1 to d = 4 + 1 by taking T-duality.
We realize our theory with gauge group U(NC) on NC D3-branes with the background of NF

D7-branes;

NCD3 : 0123
NFD7 : 01234567
C2/Z2ALE : 4567.

(3.37)

A string connecting D3-branes provides the gauge multiplets whereas a string connecting
D3-branes and D7-branes provides the hypermultiplets in the fundamental representation.
In order to get rid of adjoint hypermultiplet we have divided four spatial directions of their
world volume by Z2 to form the orbifold C2/Z2. The orbifold singularity is blown up to the
Eguchi–Hanson space by S2 with the area

A = cgsl
4
s = c

τ3
(3.38)

with gs the string coupling, ls = √
α′ the string length and τ3 = 1/gsl

4
s the D3-brane tension.

Our D3-branes are fractional D3-branes that is, D5-branes wrapping around S2. The gauge
coupling constant g of the gauge theory realized on the D3-brane is

1

g2
= b

gs

(3.39)

with b the B-field flux integrated over the S2, b ∼ ABij . The positions of the D7-branes in the
x8-direction gives the masses for the fundamental hypermultiplets whereas the positions of the
D3-branes in the x8-direction is determined by the VEV of � (when � can be diagonalized
� = diag �rr ):

x8|A-thD7 = l2
s mA, x8|r-thD3 = l2

s �rr(x
1). (3.40)

Any D3-brane must lie in a D7-brane as vacuum states, but at most one D3-brane can lie
in each D7-brane because of the s-rule [120]. Therefore the vacuum 〈A1, . . . , ANC〉 is realized
with Ar denoting positions of D3-branes, and the number of vacua is NFCNC with reproducing
field theory.

As domain wall states, � depends on one coordinate y ≡ x1. All D3-branes lie in a set
of NC out of NF D7-branes in the limit y → +∞, giving 〈A1, . . . , ANC〉, but lie in another
set of D7-branes in the opposite limit y → −∞, giving another vacuum 〈B1, . . . , BNC〉. The
NC D3-branes exhibit kinks somewhere in the y-coordinate as illustrated in figure 5. Here
we labelled Br such that the Ar th brane at y → +∞ goes to the Br th brane at y → −∞.
If we separate adjacent walls far enough the configuration between these walls approaches
a vacuum as illustrated on the right of figure 5. These configurations clarify dynamics of
domain walls easily. In non-Abelian gauge theory two domain walls can penetrate each other
if they are made of separated D3-branes like figure 6(a) but they cannot if they are made of
adjacent D3-branes like figure 6(b). In the latter case, reconnection of D3-branes occur in the
limit that two walls are compressed.

Taking a T-duality along the x4-direction in configuration (3.37), the ALE geometry is
mapped to two NS5-branes separated in the x4-direction. The configuration becomes the
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Figure 5. Multiple non-Abelian walls as kinky D-branes.

(a) (b)

Figure 6. (a) Penetrable walls in NF = 4 and NC = 2 and (b) impenetrable walls NF = 3 and
NC = 2.

Hanany–Witten-type brane configuration [111]

NCD4 : 01234
NFD6 : 0123 567
2NS5 : 0123 89.

(3.41)

The relations between the positions of branes and physical quantities in field theory on D4-
branes are summarized as

x8|r-thD4 = l2
s �rr(x

1),

x8|A-thD6 = l2
s mA,

�x4|NS5 = gsls

g2
, (�x5,�x6,�x7)|NS5 = gsl

3
s (0, 0, c).

(3.42)

D-brane configurations of domain walls are obtained completely parallel to the configuration
before taking the T-duality. However this configuration has some merits. First the strong
gauge coupling limit corresponds to zero separation �x4 = 0 of two NS5-brane along x4.
In that limit, the duality (2.23) becomes exact [3] due to the Hanany–Witten effect [111].
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Figure 7. Interactions between four domain walls in the T ∗Fn sigma model.

By using this configuration in the strong gauge coupling limit, it has been shown in [63] that
the domain wall moduli space has half properties of the monopole moduli space and that the
former can be described by the half Nahm construction.

If we put D7(D6)-branes separated along the x9-direction in configurations before (after)
taking T-duality, complex masses of hypermultiplets appear. We can consider configuration
with � and one more scalar depending on x2 as well as x1 as a 1/4 BPS state [10]. That is a
domain wall junction discussed in section 4.2.

3.1.5. More general models. We have considered non-degenerate masses of hypermultiplets
so far. If we consider (partially) degenerate masses more interesting physics appear [64].
Non-Abelian U(n) flavour symmetry arises in the original theory instead of U(1)NF−1 in
equation (2.4), and some of them are broken and associated Nambu–Goldstone bosons can
be localized on a wall unlike only U(1) localization in the case of non-degenerate masses.
Nonlinear sigma model on U(N) (called the chiral Lagrangian) appears on domain walls in
the model with NF = 2NC ≡ 2N with masses mA = m for A = 1, . . . , N and mA = −m for
A = N + 1, . . . , 2N . Including four derivative term, the Skyrme model appears on domain
walls in that model [16].

It has been shown in [4] that the moduli space of domain walls is always the union of
special Lagrangian submanifolds of the moduli space of vacua of the corresponding massless
theory. As an example, domain walls and their moduli space have been considered in the linear
sigma model giving the cotangent bundle over the Hirzebruch surface Fn. Interestingly, as
special Lagrangian submanifolds, this model contains a weighted projective space WCP 2

1,1,n

in addition to Fn. The moduli space of the domain walls has been shown to be the union of
these special Lagrangian submanifolds, both of which is connected along a lower dimensional
submanifold. Interesting consequence of this model is as follows. This model admits four
domain walls which are ordered. The inner two walls are always compressed to form a single
wall in the presence of outer two walls, and the position of that single wall is locked between
the outer two walls. However if we take away outer two walls to infinities, the compressed
walls can be broken into two walls. These phenomena can be regarded as an evidence for the
attractive/repulsive force exists between some pairs of domain walls as in figure 7.

3.2. Vortices

In this section, we consider vortices as 1/2 BPS states. There exist various types of vortices.
First we consider the ANO vortices embedded into non-Abelian gauge theory with NF = NC,
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which are usually called non-Abelian vortices. We determine their moduli space completely
by using the moduli matrix [6]. Then we find a complete relationship between our moduli
space and the moduli space constructed by the Kähler quotient, which was given in [76] by
using a D-brane configuration in string theory. Proving this equivalence has been initiated in
[6] and is completed in this review as a new result. Next we extend these results to the case
of semi-local vortices [71], which exist in the theory with the large number of Higgs fields
(NF > NC). This part is also new.

3.2.1. Vortex solutions and their moduli space. We consider the case of massless
hypermultiplets which gives only continuously degenerated and connected vacua. The case
of hypermultiplets with non-degenerate masses will be investigated in section 4.3. In the
following we simply set H 2 = 0 and H ≡ H 1 because of boundary conditions and BPS
equations. Although the adjoint scalars �p (p = 1, . . . , 6 − d) appear in d = 3, 4, 5 from
higher dimensional components of the gauge field, they trivially vanish in the vacua and also
in vortex solutions. Therefore we can consistently set �p = 0. In the theory with NF = NC

in any dimension, the vacuum is unique and is in the so-called colour–flavour locking phase,
H 1 = √

c1NC and H 2 = 0, where symmetry of the Lagrangian is spontaneously broken down
to SU(NC)G+F. This symmetry will be further broken in the presence of vortices, and therefore
it acts as an isometry on the moduli space.

The Bogomol’nyi completion of energy density for vortices in the x1–x2 plane can be
obtained as

E = Tr

[
1

g2

(
B3 +

g2

2
(c1N − HH †)

)2

+ (D1H + iD2H)(D1H + iD2H)†

]
+ Tr[−cB3 + 2i∂[1HD2]H

†] (3.43)

with a magnetic field B3 ≡ F12. This leads to the vortex equations

0 = D1H + iD2H, (3.44)

0 = B3 +
g2

2
(c1N − HH †), (3.45)

and their tension

T = −c

∫
d2x Tr B3 = 2πck, (3.46)

with k (∈ Z) measuring the winding number of the U(1) part of broken U(NC) gauge
symmetry. The integer k is called the vorticity or the vortex number.

Let us first consider the simplest example of the model with NC = NF = 1 in order to
extract fundamental properties of vortices. Vortices in this model are called Abrikosov–
Nielsen–Olesen (ANO) vortices [66]. A profile function of the ANO vortex has been
established numerically very well, although no analytic solution is known. We illustrate
numerical solutions of the profile function with the vortex number k = 1, . . . , 5 in figure 8.
One can see that the Higgs field vanishes at the centre of the ANO vortex, and the winding
to the Higges vacuum is resolved smoothly. Then the magnetic flux emerges there, whose
intensity is given by B3 = −g2c/2 due to the vortex equation (3.45). Therefore a characteristic
size of ANO vortex can be estimated to be of order 1/(g

√
c) by taking the total flux 2π into

account.
In the non-Abelian case with NF = NC ≡ N � 2, a solution for single vortex can be

constructed by embedding such ANO vortex solution (B3�,H�) in the Abelian case into those
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Figure 8. Distributions of numerical vortex solutions with vorticity k = 1, . . . , 5 as functions of
the radius r. The magnetic flux is centred at r = 0, whereas the Higgs field vanishes at r = 0 and
approaches to the vacuum value

√
c at r → ∞. Energy density has a dip at r = 0 except for the

case of unit (k = 1) vorticity. (a) Magnetic flux and Higgs field, and (b) energy.

in the non-Abelian case, like

B3 = U diag(B3�, 0, . . . , 0)U−1, H = U diag(H�,
√

c, . . . ,
√

c)U−1. (3.47)

Here U takes a value in a coset space, the projective space SU(N)/[SU(N − 1) × U(1)] �
CP N−1, arising from the fact that the SU(N)G+F symmetry is spontaneously broken by the
existence of the vortex. It parametrizes the orientation of the non-Abelian vortex in the internal
space, whose moduli are called orientational moduli. Note that at the centre of the ANO vortex
x1,2 = x

1,2
0 , the rank of the N × N matrix H reduces to N − 1, (det(H(x

1,2
0 )) = 0), implying

the existence of an N-column vector �φ satisfying

H
(
x

1,2
0

) �φ = 0. (3.48)

Components of this vector are precisely the homogeneous coordinates of the orientational
moduli CP N−1. Its components are actually given by �φ = U(1, 0, . . .)T. Roughly speaking,
the moduli space of multiple non-Abelian vortices is parametrized by a set of the position
moduli and the orientational moduli, both of which are attached to each vortex as we will see
later.

We now turn back to general cases with arbitrary NC and NF (>NC). The vortex
equation (3.44) can be solved by use of the method similar to that in the case of domain
walls. Defining a complex coordinate z ≡ x1 + ix2, the first of the vortex equations (3.44) can
be solved as [6]

H = S−1H0(z), W1 + iW2 = −i2S−1∂̄zS. (3.49)

Here S = S(z, z̄) ∈ GL(NC, C) is defined in the second of equations (3.49), and H0(z) is an
arbitrary NC by NF matrix whose components are holomorphic with respect to z. We call H0

the moduli matrix of vortices. With a gauge invariant quantity

�(z, z̄) ≡ S(z, z̄)S†(z, z̄) (3.50)

the second vortex equations (3.45) can be rewritten as

∂z(�
−1∂̄z�) = g2

4
(c1NC − �−1H0H

†
0 ). (3.51)
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We call this the master equation for vortices5. This equation is expected to give no additional
moduli parameters. It was proved for the ANO vortices (NF = NC = 1) [67] and is consistent
with the index theorem [76] in general NC and NF as seen below.

Therefore we assume that the moduli matrix H0 describes thoroughly the moduli space of
vortices. We should, however, note that there exists a redundancy in solution (3.49): physical
quantities H and W1,2 are invariant under the following V -transformations

H0(z) → H ′
0(z) = V (z)H0(z), S(z, z̄) → S ′(z, z̄) = V (z)S(z, z̄), (3.52)

with V (z) ∈ GL(NC, C) for ∀z ∈ C, whose elements are holomorphic with respect to z.
Incorporating all possible boundary conditions, we find that the total moduli space of vortices
Mtotal

NC,NF
is given by

Mtotal
NC,NF

= {H0(z)|H0(z) ∈ MNC,NF}
{V (z)|V (z) ∈ MNC,NC , det V (z) �= 0} (3.53)

where MN,N ′ denotes a set of holomorphic N × N ′ matrices. This is of course an infinite-
dimensional space which may not be defined well in general.

The original definition of the total moduli space is the space of solutions of two BPS
equations in (3.44) and (3.45) divided by the U(NC) local gauge equivalence denoted
as G(x): {equations(3.44) and (3.45)}/G(x). On the other hand, we have solved the
first vortex equation (3.44), but have to assume the existence and the uniqueness of
the solution of the master equation (3.51), in order to arrive at the total moduli space
(3.53). Let us note that the first vortex equation (3.44) is invariant under the complex
extension GC = U(NC)C = GL(NC, C) of the local gauge group G = U(NC). Our
procedure to obtain the total moduli space Mtotal

NC,NF
in equation (3.53) implies that it

can be rewritten as {equation(3.44)}/GC(x). Therefore the uniqueness and existence of
solution of the master equation (3.51) is equivalent to the isomorphism between these
spaces {equations (3.44) and (3.45)}/G(x) � {equation (3.44)}/GC(x). This isomorphism
is rigorously proven at least if we compactify the base space (co-dimensions of vortices) C to
CP 1. This is called the Hitchin–Kobayashi correspondence [115–117].6 We will establish the
finite-dimensional version of this equivalence (for each topological sector) directly in another
method using moduli matrix in section 3.2.3.

We require that the total energy of configurations must be finite in order to obtain physically
meaningful vortex configurations. This implies that any point at infinity S1

∞ must belong to
the same gauge equivalence class of vacua. Therefore elements of the moduli matrix H0

must be polynomial functions of z. (If exponential factors exist they become dominant at the
boundary S1

∞ and the configuration fails to converge to the same gauge equivalence class there.)
Furthermore the topological sector of the moduli space of vortices should be determined under
a fixed boundary condition with a given vorticity k.

The energy density (3.43) of BPS states can be rewritten in terms of the gauge invariant
matrix � in equation (3.50) as

E|BPS = Tr[−cB3 + 2i∂[1HD2]H
†]|BPS

= 2c∂̄z∂z

(
1 − 4

g2c
∂̄z∂z

)
log det �. (3.54)

5 The master equation reduces to the so-called Taubes equation [67] in the case of ANO vortices (NC = NF = 1) by
rewriting c�(z, z̄) = |H0|2 e−ξ(z,z̄) with H0 = ∏

i (z − zi). Note that log � is regular everywhere while ξ is singular
at vortex positions. Non-integrability of the master equation has been shown in [120].
6 Actually it is proved for arbitrary gauge group G with arbitrary matter contents and arbitrary compact base space.
It may be interesting to note that this isomorphism is an infinite-dimensional version of the Kähler quotient.



R338 Topical Review

The last four-derivative term above does not contribute to the tension if a configuration
approaches to a vacuum on the boundary. Equation (3.51) implies asymptotic behaviour at
infinity z → ∞ becomes � → 1

c
H0H

†
0 . The condition of vorticity k requires

T = 2πck = − c

2
i
∮

dz ∂z log det(H0H
†
0 ) + c.c. (3.55)

The total moduli space is decomposed into topological sectors MNF,NC,k with vorticity k.

3.2.2. The case with NF = NC: the non-Abelian ANO vortices. Let us consider the case
with NC = NF ≡ N . In this case, the vacuum, given by H = √

c1N , is unique and no flat
direction exists. The tension formula (3.55) with NF = NC implies that the vorticity k can be
rewritten as

k = 1

2π
Im

∮
dz ∂log(det H0). (3.56)

We thus obtain the boundary condition on S1
∞ for H0 as

det(H0) ∼ zk for z → ∞, (3.57)

that is, det H0(z) has k zeros. We denote positions of zeros by z = zi (i = 1, . . . , k). These
can be recognized as the positions of vortices:

P(z) ≡ det H0(z) =
k∏

i=1

(z − zi), (3.58)

and the orientation moduli �φi of the ith vortex are determined by

H0(zi) �φi = 0 ↔ H(z = zi, z̄ = z̄i ) �φi = 0. (3.59)

The moduli space MN,k for k-vortices in U(N) gauge theory can be formally expressed as a
quotient

MN,k = {H0(z)|H0(z) ∈ MN, deg(det(H0(z))) = k}
{V (z)|V (z) ∈ MN, det V (z) = 1} (3.60)

where MN denotes a set of N × N matrices of polynomial function of z, and ‘deg’ denotes
a degree of polynomials. The condition det V (z) = 1 holds because we have fixed P(z)

as a monic polynomial (coefficient of highest power is unity) as in equation (3.58) by using
the V -transformation (3.52). This is a finite-dimensional subspace of the total moduli space
(3.53).

The V -transformation (3.52) allows us to reduce degrees of polynomials in H0 by applying
the division algorithm. After fixing the V -transformation completely, any moduli matrix H0

can be uniquely transformed to a triangular matrix, which we call the standard form of vortices:

H0 =


P1(z) R2,1(z) R3,1(z) · · · RN,1(z)

0 P2(z) R3,2(z) · · · RN,2(z)

...
. . .

...

RN,N−1(z)

0 · · · 0 PN(z)

 . (3.61)

Here Pr(z) are monic polynomials defined by Pr(z) = ∏kr

i=1(z − zr,i) with zr,i ∈ C, and
Rr,m(z) ∈ Pol(z; kr) where Pol(z; n) denotes a set of polynomial functions of order less than
n. We would like to emphasize that the standard form (3.61) has one-to-one correspondence
to a point in the moduli space MN,k . Since τ(z) = ∏N

r=1 Pr(z) ∼ zk asymptotically for
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z → ∞, we obtain the vortex number k = ∑N
r=1 kr from equation (3.55). The positions of

the k-vortices are the zeros of Pr(z). Collecting all matrices with given k in the standard form
(3.61) we obtain the whole moduli space MN,k for k-vortices, as in the case of domain walls.
Its generic points are parametrized by the matrix with kN = k and kr = 0 for r �= N , given by

H0(z) =
(

1N−1 − �R(z)

0 P(z)

)
(3.62)

where ( �R(z))r = Rr(z) ∈ Pol(z; k) constitutes an N − 1 vector and P(z) = ∏k
i=1(z − zi).

This moduli matrix contains the maximal number of the moduli parameters in MN,k . Thus
the dimension of the moduli space is dim(MN,k) = 2kN . This coincides with the index
theorem shown in [76] implying the uniqueness and existence of a solution of the master
equation (3.51).

The standard form (3.61) has the merit of covering the entire moduli space only once
without any overlap. To clarify the global structure of the moduli space, however, it may be
more useful to parametrize the moduli space with overlapping patches. We can parametrize
the moduli space by a set of k+N−1Ck patches defined by

(H0)
r
s = zks δr

s − T r
s(z), T r

s(z) =
ks∑

n=1

(Tn)
r
sz

n−1 ∈ Pol(z; ks). (3.63)

Coefficients (Tn)
r
s of monomials in T r

s(z) are moduli parameters as coordinates in a patch.
We denote this patch by U (k1,k2,...,kN ):

U (k1,k2,...,kN ) = {(Tns
)r s}, ns = 1, . . . , ks, r = 1, . . . , NC. (3.64)

We can show that each patch fixes the V -transformation (3.52) completely including any
discrete subgroup, and therefore that the isomorphismU (k1,k2,...,kN ) � CkN holds. The transition
functions between these patches are given by the V -transformation (3.52), completely defining
the moduli space as a smooth manifold,

MN,k �
⋃

U (k1,k2,...,kN ). (3.65)

To see this explicitly we show an example of single vortex (k = 1). In this case there
exist N patches defined in N H0’s given by

H0(z) ∼


1 0 −b

(N)
1

. . .
...

0 1 −b
(N)
N−1

0 · · · 0 z − z0

 ∼


1 −b

(N−1)
1 0

. . .
...

0 z − z0 0

0 · · · −b
(N−1)
N 1

 ∼ · · ·

∼


z − z0 0 · · · 0

−b
(1)
2 1 0
...

. . .

−b
(1)
N 0 1

 , (3.66)

and transition functions between them are summarized by

�φ ∼



b
(N)
1
...

...

b
(N)
N−1

1


= b

(N)
N−1


b

(N−1)
1
...

b
(N−1)
N−2

1

b
(N−1)
N

 = · · · = b
(N)
1



1

b
(1)
2
...

b
(1)
N−1

b
(1)
N

 . (3.67)
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These b’s are the standard coordinates for CP N−1, and we identify components of the vector �φ
as the orientational moduli satisfying equation (3.59). We thus confirmMN,k=1 � C×CP N−1

recovering the result [77] obtained by a symmetry argument. To see the procedure more
explicitly, we show, in the case of N = 2, that the V -transformation connects sets of
coordinates in two patches as(

z − z0 0
−b′ 1

)
∼

(
0 −b

1/b z − z0

)(
z − z0 0
−1/b 1

)
=

(
1 −b

0 z − z0

)
, (3.68)

where we obtain a transition function b′ = 1/b.
The next example is the case of N = 2 and k = 2 which is more interesting and cannot

be obtained by symmetry argument only. The moduli space MN=2,k=2 is parametrized by the
three patches U (0,2),U (1,1),U (2,0) defined in H0’s given by

H0 =
(

1 −az − b

0 z2 − αz − β

)
,

(
z − φ −ϕ

−ϕ̃ z − φ̃

)
,

(
z2 − αz − β 0
−a′z − b′ 1

)
, (3.69)

respectively. We find that the transition functions between U (0,2) and U (1,1) are given by

a = 1

ϕ̃
, b = − φ̃

ϕ̃
, α = φ + φ̃, β = ϕϕ̃ − φφ̃ (3.70)

and that those between U (0,2) and U (2,0) are given by

a = a′

a′2β − a′b′α − b′2
, b = − b′ + a′α

a′2β − a′b′α − b′2
(3.71)

with common parameters α, β. Positions of two vortices z1, z2 are given by solving an equation
P(zi) = 0. We find that orientations of the vortices satisfying equation (3.59) are expressed
by four kinds of forms

�φi ∼
(

azi + b

1

)
∼

(
zi − φ̃

ϕ̃

)
∼

(
ϕ

zi − φ

)
∼

(
1

a′zi + b′

)
(3.72)

with the equivalence relation �φ ∼ �φ′ = λ �φ, (λ ∈ C∗) of CP N−1. The above equivalence
relations between the various forms for orientation are consistent with the transition functions
(3.70) and (3.71), since the orientations are, by definition, independent of the patches which
we take.

We now see properties of the three patchesU (0,2),U (1,1) andU (2,0). If we set a = 0 (a′ = 0)

in U (0,2)(U (2,0)), the orientations of two vortices are parallel

�φ1 ∼ �φ2 ∼ (b, 1)T(∼ (1, b′)T). (3.73)

This is in contrast to the patch U (1,1) where parallel vortices are impossible, as long as the
two vortices are separated. Configurations for parallel multiple vortices can be realized by
embedding the configuration for multiple ANO vortices in the Abelian gauge theory in the
same way as equation (3.47). In contrast we can take the orientations of two vortices opposite
each other in the patch U (1,1), like

�φ1 = (1, 0)T, �φ2 = (0, 1)T (3.74)

by setting φ = z1, φ̃ = z2 and ϕ = ϕ̃ = 0. In this case, the moduli matrix H0(z), � as a
solution of equation (3.51) and physical fields B3,H are all diagonal, and thus we find that this
case is realized by embedding two sets of single ANO vortices in the Abelian case into two
different diagonal components of the moduli matrices of this non-Abelian case. The moduli
space for non-Abelian vortices described by patches (3.69) are far larger than subspaces which
can be described by embedding the Abelian cases. Such subspaces can be interpolated with
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Figure 9. The moduli space for separated vortices.

continuous moduli in the whole moduli space. Actually, as long as the vortices are separated
z1 �= z2, the positions z1, z2 ∈ C and the orientations �φ1, �φ2 ∈ CP 1 are independent of each
others and can parametrize the moduli space, as we discuss later.

In generic cases with arbitrary N and k, we can find that orientational moduli �φi ∈ CP N−1

are attached to each vortex at z = zi ∈ C as an independent moduli parameters. Thus the
asymptotic form (open set) of the moduli space for separated vortices are found to be

MN,k ← (C × CP N−1)k/Sk (3.75)

with Sk permutation group exchanging the positions of the vortices7. Here ‘←’ denotes a map
resolving the singularities on the right hand side. We sketch the structure of separated vortices
in figure 9. Equation (3.75) can be easily expected from physical intuition; for instance the
k = 2 case was found in [84]. The most important thing is how orbifold singularities of
the right-hand side in (3.75) are resolved by coincident vortices [6]. In the N = 1 case,
MN=1,k � Ck/Sk � Ck holds instead of (3.75) [67], and the problem of singularity does not
occur.

3.2.3. Equivalence to the Kähler quotient. In this subsection we rewrite our moduli space of
vortices in the form of Kähler quotient which was originally found in [76] by using a D-brane
configuration. This form is close to the ADHM construction of instantons and so we may call
it the half ADHM construction.

First of all, let us consider a vector whose N components are elements of Pol(z; k)

satisfying an equation

H0(z) �φ(z) = �J (z)P (z) = 0 mod P(z) (3.76)

where P(z) ≡ det(H0(z)) and �J (z) is a certain holomorphic polynomial obtained, that is, the
equation requires that the l.h.s. can be divided by the polynomial P(z). We can show there
exist k linearly-independent solutions { �φi(z)}, (i = 1, . . . , k) for �φ(z) with given H0(z). We
obtain the N × k matrices Φ(z) and J(z), defined by

Φ(z) = ( �φ1(z), �φ2(z), . . . , �φk(z)), J(z) = ( �J 1(z), �J 2(z), . . . , �J k(z)), (3.77)

with satisfying

H0(z)Φ(z) = J(z)P (z). (3.78)

Let us consider a product zΦ(z). Since components of this product are not elements of
Pol(z, k) but Pol(z, k + 1) generally, this matrix leads to an N × k constant matrix Ψ as a

7 Interestingly this is a ‘half’ of the open set of the moduli space of k separated U(N) instantons on non-commutative
R4, (C2 × T ∗CP N−1)k/Sk . The singularity of the latter is resolved in terms of the Hilbert scheme at least for N = 1
[123]. Also it was pointed out in [76] that the moduli space of vortices is a special Lagrangian submanifold of the
moduli space of non-commutative instantons.
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quotient of division by the polynomial P(z). Moreover a remainder of this division can be
written as Φ(z) multiplied by a certain k×k constant matrix Z since each column vector of the
remainder is also a solution of equation (3.76). Therefore we find that the product determines
the matrices Z and Ψ uniquely as

zΦ(z) = Φ(z)Z + ΨP(z). (3.79)

Note that when we extract the matrix Φ(z) from the moduli matrix H0, there exists
a redundancy due to a rearrangement of �φi(z) which leads to an equivalence relation
Φ(z) � Φ′(z) = Φ(z)U−1 with U ∈ GL(k, C). This fact implies that we should also
consider an equivalence relation for the matrices Z, � as

(Z,Ψ) � (Z′,Ψ′) = (UZU−1,ΨU−1), (3.80)

where a GL(k, C) action on Φ(z) and {Z, �} is free: if Φ(z)X = 0 then X = 0. Since the
action is free, the quotient space is smooth. This is precisely the complexified transformation
appearing in the Kähler quotient construction. On the other hand the Kähler quotient
construction of the moduli space in [76] is given by k by k matrix Z and N by k matrix
ψ . The concrete correspondence is obtained by fixing the imaginary part of the complexified
transformation as

{Z,Ψ}//GL(k, C) � {(Z,ψ)|[Z†, Z] + ψ †ψ ∝ 1k}/U(k) ≡ MHT. (3.81)

Therefore, the above procedure defines the mapping from our moduli space MN,k (3.60) into
the Kähler quotient (3.81).8 This is a topological sector version of the Hitchin–Kobayahsi
correspondence as informed below equation (3.53).

By combining equations (3.78) and (3.79), we derive a direct relation between the moduli
matrix H0(z) and the matrices {Z, �} as

∇†L = 0, with L† ≡ (H0(z), J(z)), ∇ ≡
( −Ψ

z − Z

)
. (3.82)

By use of this equation, we can concretely relate coefficients (coordinates) (Tm)r s in a patch
Uk1,...,kNC of H0 (3.63) with the matrices {Z, �} as

(Ψ)r (s,m) =
{

δr
s δ

1
m for kr > 0

(Tm)r s for kr = 0,

(Z)(r,n)
(s,m) =

{
δn+1
m δr

s for 1 � n < kr

(Tm)r s for n = kr ,

(3.83)

where the label (s,m) runs from (s, 1) to (s, ks) with 1 � s � NC, and the equation

det(z − Z) = det(H0(z)) = P(z) (3.84)

holds. To show this relation, we need J(z) in the patch Uk1,...,kNC as

(J(z))r (s,m) = Hrs
0 (z)

zm

∣∣∣∣
reg

= zks−mδr
s −

ks∑
l=m+1

(Tl)
r
sz

l−m−1 (3.85)

where ‘reg’ implies to remove terms with negative power of z. By substituting
equations (3.63), (3.83) and (3.85), we can confirm equation (3.82).

Using the whole set of H0’s in equation (3.63), we obtain the set of (Z,Ψ)’s in
equation (3.83). On the other hand, the GL(k, C) action (3.80) in the Kähler quotient

8 The choice of the D-term condition [Z†, Z] + ψ†ψ ∝ 1k is not unique. There exist many candidates of it but all of
them give topologically isomorphic manifolds [79].
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(3.81) can be fixed to the form (3.83). Namely the Kähler quotient (3.81) is also covered by
N+k−1Ck patches given by (3.83) where (Tm)r s are coordinates of the patches. Combining this
result with the argument (3.76)–(3.81), we finally find that the moduli space of vortices given
by our moduli matrix is completely equivalent to that defined by the Kähler quotient:

MN,k � {Z,Ψ}//GL(k, C). (3.86)

Thus this result confirms the result in [76] from the field theoretical point of view, while they
used a method of D-brane construction.

Let us examine the relation with simple examples. For the separated vortices zi �= zj , we
find �φi(z) = �φi

∏
j �=i (z − zj ) with orientations �φi satisfying equations (3.59) gives Ψ for the

orientational moduli and the diagonal matrix Z whose elements correspond to the positions of
the vortices

Z = diag(z1, z2, . . . , zk), Ψ = ( �φ1, · · · , �φk), (3.87)

although the matrix Z is not always diagonalizable by GL(k, C) if there are coincident vortices.
In what follows we illustrate the correspondence in the case of (N, k) = (2, 2). The

moduli data in the patches (3.69) can be summarized by two matrices Z and Ψ as follows:

(
Ψ
Z

)
=


b a

1 0
0 1
β α

 ,


1 0
0 1
φ ϕ

ϕ̃ φ̃

 ,


1 0
b′ a′

0 1
β α

 . (3.88)

The transition functions (3.70) and (3.71) between these three patches can be expressed by
the complexified gauge transformation between moduli data as (Z′,Ψ′) = (UZU−1,ΨU−1)

with appropriate U ∈ GL(2, C).

3.2.4. The cases of NF > NC: non-Abelian semi-local vortices. In the cases with NF > NC,
there appear additional moduli for vortices, typically, moduli for sizes of vortices due to
additional Higgs fields. A vortex possessing such size moduli is called a semi-local vortex and
its size is limited below by the size of ANO vortex. We also have non-normalizable moduli.

As in the last subsection, we take elements of the moduli matrix H0(z) as polynomials
with respect to z. This is because we are interested in configurations with boundary conditions
such that any point of the boundary belongs to the same vacuum. The tension of k vortices in
this case is given by

T = 2πck = c

2

∮
dz dz̄ ∂∂̄ log

(
det H0H

†
0

) = c

2

∮
dz dz̄ ∂∂̄ log

∑
〈{Ar }〉

|τ 〈{Ar }〉|2
 , (3.89)

where τ is defined similarly to equation (3.19) for the case of domain walls:

τ 〈{Ar }〉(z) ≡ det H 〈{Ar }〉
0 (z). (3.90)

Equation (3.89) requires that the maximal degree of a set of polynomials {τ 〈{Ar }〉} is k.
We now discuss moduli parameters of a single vortex in the Abelian case with NC = 1

and general NF. The condition k = 1 implies

H0(z) = (
a1z + b1, a2z + b2, . . . , aNFz + bNF

)
, aA, bA ∈ C (3.91)

where {aA} are homogeneous coordinates of CP NF−1. Some of these parameters are not
normalizable moduli of the vortex but are non-normalizable moduli which should be interpreted
as moduli of vacua on the boundary, as shown in the following. In a region sufficiently far
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from the origin (z �= 0, |bA/z| � |aA|), the moduli matrix behaves as

H0(z)
z �=0�

(
a1 +

b1

z
, . . . , aNF +

bNF

z

)
z→∞→ (a1, a2, . . . , aNF) (3.92)

where we have used a V -transformation V (z) = z−1 which is non-singular and is allowed in
regions with z �= 0. We thus have found that aA parametrize the moduli space CP NF−1 of the
Higgs vacua at the boundary, as HA|boundary = √

caA/
√

|a|2. Therefore the set {aA} should be
fixed as a boundary condition. Without loss of generality we can choose the boundary condition
as H ′|boundary = √

c(1, 0, . . . , 0) = H |boundaryU with the flavour symmetry U ∈ SU(NF).
Under this boundary condition the moduli matrix should be taken as

H ′
0 = (z − z0, b

′
2, b

′
3, . . . , b

′
NF−1) � H0U. (3.93)

Here the parameter z0 = −(b · a†)/|a|2 describes the position of the semi-local vortex, and it

also has a size modulus b′ ≡
√∑NF

A=2 |b′
A|2 =

√
|a|2|b|2 − |b · a†|2/|a|2. Furthermore, in the

cases of NF � 3, the vortex has an internal modulus {b′
A/b′} describing non-vanishing Higgs

fields at its centre. Note that even when the size modulus of the semi-local vortex is zero,
b′ = 0, it becomes the ANO vortex with the size 1/g

√
c.

In general cases for NF and NC, the moduli matrix H0 contains moduli of the vacua on
the boundary (restricted to H 2 = 0)

Mboundary = GNF,NC � SU(NF)

SU(NC) × SU(NF − NC) × U(1)
, (3.94)

which should be fixed.
Therefore, the moduli space MNC,NF,k of k-vortices in U(NC) gauge theory coupled to

NF hypermultiplets can be formally expressed as the quotient of

MNC,NF,k = {H0(z)|H0(z) ∈ MNC,NF , max{deg τ 〈{Ar }〉} = k}
{V (z)|V (z) ∈ MNC,NC , det V (z) = const �= 0} × Mboundary

(3.95)

where MN,N ′ denotes a set of N ×N ′ matrices of polynomial functions of z. Let us investigate
the moduli space for semi-local non-Abelian vortices concretely. Using the flavour symmetry
SU(NF), we can choose a vacuum on the boundary as 〈vac〉 = 〈1, 2, . . . , NC〉 without loss of
generality. Namely we have conditions

det(H 〈vac〉) = (
√

c)NC, det(H 〈{Ar }〉) = 0 for 〈{Ar}〉 �= 〈vac〉. (3.96)

By use of the relation det H 〈{Ar }〉/det H 〈{Br }〉 = τ 〈{Ar }〉/τ 〈{Br }〉 we find that the boundary
condition with vorticity k requires

deg τ 〈vac〉(z) = k, and deg τ 〈{Ar }〉(z) < k for 〈{Ar}〉 �= 〈vac〉. (3.97)

Due to the Plücker relations (3.33) all of these conditions are not independent, but only the
following two conditions turn out to be independent:

deg τ 〈vac〉(z) = k,

(F(z))rA ≡ τ 〈1,...,r−1,A,r+1,...,NC〉(z) ∈ Pol(z; k),
(3.98)

with NC < A � NF.
Let us decompose the moduli matrix H0 to an NC×NC matrix D(z) and an NC×(NF−NC)

matrix Q(z) as

H0(z) = (D(z), Q(z)). (3.99)

Then the first and the second conditions in equation (3.98) are regarded as conditions for
the matrices D(z) and Q(z), respectively. Under these constraints, we can obtain the moduli
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matrix for the semi-local vortices. For instance, in the case of k = 1, the moduli matrix
in a patch U (0,...,0,1) contains an (NC − 1)-component vector �b as orientational moduli and
additional moduli {qA} as in the following:

H0(z) �
(

1NC−1 −�b 0 0 · · · 0
0 z − z0 qNC+1 qNC+2 · · · qNF

)
. (3.100)

Since the monic polynomial P(z) ≡ τ 〈vac〉(z) = det D(z) satisfies condition (3.98) similar
to equation (3.58), we can use the same strategy as we used in the NF = NC case to fix
the V -transformation. We thus find that D(z) consists of kNC complex moduli parameters
corresponding to positions and orientations of k vortices. We also obtain holomorphic NC × k

matrix Φ(z) whose components belong to Pol(z; k) as a solution of the equation

D(z)Φ(z) = J(z)P (z). (3.101)

Next let us consider moduli described by Q(z). Here we can easily find the identities given by

0 = H
r[A1
0 H

1A2
0 H

2A3
0 · · · HNCANC+1]

0 ∝ H
r[A1
0 τ 〈A2···ANC+1]〉 (3.102)

where the square bracket means anti-symmetrization with respects to indices As, (s =
1, . . . , NC + 1). By setting {As} to {1, 2, . . . , NC, A} in the above we obtain an identity
for the matrices

D(z)F(z) = Q(z)P (z). (3.103)

By use of this identity, we find condition (3.98) requires that each column of F(z) should be
written by a linear combination of column vectors of Φ(z) in equation (3.101), that is, F(z)

should be solved with a constant k × (NF − NC) matrix Ψ̃ as, F(z) = Φ(z)Ψ̃. Comparing
equation (3.101) with equation (3.103) we find that Q(z) satisfying the condition must be
written by

Q(z) = J(z)Ψ̃, (3.104)

and conversely Q given in the above with an arbitrary Ψ̃ realizes the second condition.
Therefore, the matrix Ψ̃ describes the additional moduli for semi-local vortices entirely. As a
result, we find that the dimension of the moduli space of k vortices in the cases with general
NF and NC is given by

dimMNC,NF,k = 2kNC + 2k(NF − NC) = 2kNF (3.105)

in accord with the result of the index theorem [76].
In this case of semi-local vortices also we can extract the matrices Z,Ψ from Φ(z) in

equation (3.101). The GL(k, C) action (3.80) acts also on Ψ̃ as

(Z,Ψ, Ψ̃) � (UZU−1,ΨU−1, UΨ̃) (3.106)

with U ∈ GL(k, C). Therefore the moduli space for semi-local non-Abelian vortices in terms
of the moduli matrix can be translated to that of the Kähler quotient as

MNC,NF,k � {Z,Ψ, Ψ̃}//GL(k, C). (3.107)

We can fix the imaginary part of the GL(k, C) action as in equation (3.81), to give

MNC,NF,k � {(Z,ψ, ψ̃)|[Z†, Z] + ψ †ψ − ψ̃ψ̃ † ∝ 1k}/U(k), (3.108)

with k × (NF − NC) matrix ψ̃ . This again recovers the result in [76].
Finally, it may be useful to summarize the relations between the moduli matrix H0(z) and

the matrices for Kähler quotient as

∇†L = ∇̃†L = 0 (3.109)
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where an (NF + k) × NC matrix L, an (NF + k) × k matrix ∇ and an (NF + k) × (NF − NC)

matrix ∇̃ are defined by

L† ≡ (H0(z), J(z)), ∇ ≡
 −Ψ

0
z − Z

 and ∇̃ ≡
 0

1NF-NC

−Ψ̃

 . (3.110)

3.2.5. Lumps as semi-local vortices in the strong coupling limit. Nonlinear sigma models
admits lumps [72, 73] as co-dimension two solitons, which can be obtained from semi-local
vortices (NF > NC) in the limit of strong gauge coupling g2 → ∞ keeping the vortex size
finite. Thus lumps also have a size modulus. If we take the limit of vanishing size modulus,
the lumps reduce to a singular configuration. This phenomenon reflects the fact that ANO
vortices (with size 1/g

√
c) become singular in the strong gauge coupling limit.

If we take the strong coupling limit keeping log � smooth, the master equation (3.51) can
be solved algebraically as

�|g2→∞ = c−1H0(z)H
†
0 (z̄). (3.111)

Namely, we can obtain unique and exact solutions for lumps with given arbitrary H0. Here we
should note that if we take a solution (3.111) with the quantity H0(z)H0(z)

† having a vanishing
point, H0(z0)H0(z0)

† = 0, the lhs of equation (3.51) leads to a singular profile implying that
the strong coupling limit is improper in such a case. Therefore, the moduli matrix H0 whose
rank reduces somewhere in the z-plane, which describes an embedding of ANO vortices, is
prohibited for lump solutions. To obtain the moduli space for lumps, subspaces with ANO
vortices embedded should be removed from that for the semi-local vortices. We thus find that
the total moduli space for lumps Mtotal

NC,NF
|g2→∞ is obtained as a set of holomorphic maps from

the z-plane to the Grassmann manifold GNF,NC , to give

Mtotal
NC,NF

∣∣
g2→∞ = {H0(z)|H0(z) ∈ MNF,NC , rank(H0(z)) = NF}

{V (z)|V (z) ∈ MNC,NC , rank(V (z)) = NC}
= {H0|C → GNF,NC , ∂̄zH0 = 0}. (3.112)

Due to the removal of the subspaces, this moduli space has singularities, which are known
as small-lump singularities. In other words, the moduli space of semi-local vortices can be
obtained by resolving small lump singularities in the lump moduli space by inserting the ANO
vortices.

3.2.6. Vortices on cylinder. Interesting relation has been observed between domain walls
and vortices [7]. In order to study the relation, it is most useful to consider vortices on a
cylinder (−∞ < x1 < ∞, x2 � x2 + 2πR) with one dimension compactified with the radius
R. Vortices can exist when the Higgs scalars are massless. However, domain walls require
massive Higgs scalars making the vacua discrete. It is best to introduce the mass for the
Higgs scalars by a compactification with a twisted boundary condition, usually referred as a
Scherk–Schwarz dimensional reduction. One can obtain solutions of 1/2 BPS equations for
vortices on the cylinder as we have described before on a plane. If the vortices are placed on
the cylinder and the twisted boundary condition is applied, the moduli matrix should satisfy

H0(z + 2π iR) = H0(z) e2π iMR, (3.113)

where the twisting phase e2π iMR is related to the mass matrix M for the hypermultiplets. In
order to make the periodicity in x2 explicit, one can use periodic variable u instead of z as

H0(z) = Ĥ0(u) eMz, with u = exp
z

R
. (3.114)
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The V -equivalence relation becomes in this case

Ĥ0(u) � Ĥ ′
0(u) = V (u)Ĥ0(u) (3.115)

with V (u) ∈ GL(NC, C) for u ∈ C − {0}. By keeping all the Kaluza–Klein modes, we have
found a duality between vortices and domain walls [7].

On the other hand, we should retain only the lowest mode, if we restrict ourselves to
phenomena at energies low compared to the Kaluza–Klein mass scales 1/R. Then we should
take a particular form of moduli matrix given by the constant Ĥ0

H0(z) = Ĥ0 eMz. (3.116)

This constant Ĥ0 is precisely the moduli matrix for domain walls that we have discussed.

3.3. Effective lagrangians

The low-energy effective Lagrangian on solitons is given by promoting the moduli parameters
to fields on the world volume of the soliton and by assuming the weak dependence on the
world-volume coordinates of the solitons [29]. In our case, we promote the moduli parameters
φα in the moduli matrix H0 to fields on the world volume of the soliton, such as walls or
vortices

H0(φ
α) → H0(φ

α(x)), (3.117)

where the coordinates on the world volume is denoted as xm. We introduce ‘the slow-
movement parameter’ λ, which is assumed to be much smaller than the typical mass scale
in the problem. Please note that we are using the slow-movement approximation to the case
of nontrivial world volume besides the time dependence, although the original proposal was
made for the case without the spatial world volume. It is also worth pointing out that we can
obtain not only the effective Lagrangian for the quasi-Nambu–Goldstone (QNG) modes, but
also for the Nambu–Goldstone (NG) modes, which are required by the spontaneously broken
global symmetry. We will present the procedure and results in terms of component fields,
although it is extremely useful and straightforward to use the superfield formalism respecting
the preserved supersymmetry especially in the case of 1/2 BPS system such as walls or vortices
[14], that we are going to describe below.

3.3.1. Effective Lagrangian on walls. In the case of domain walls, all the moduli parameters
are contained in the constant moduli matrix H0 [1, 2]. Since the typical mass scales of the
wall are g

√
c and the characteristic mass difference �m of hypermultiplets, we assume the

slow-movement of moduli fields

λ � min(�m, g
√

c). (3.118)

The 1/2 BPS background fields of the wall are of the order of λ0 = O(1), whereas derivatives
in terms of the world-volume coordinates and induced fields by the fluctuations φα are of
order λ

H 1 ∼ O(1), � ∼ O(1), ∂m ∼ O(λ). (3.119)

Wm ∼ O(λ), H 2 ∼ O(λ), Fmy(W) ∼ O(λ). (3.120)

Decomposing the field equations in powers of λ, we find the BPS equations (3.2)
automatically at the order λ0, whereas we obtain all the induced fields at higher orders.
Assuming H 2 = 0, we vary the fundamental Lagrangian to obtain the equations of motion
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(with H 2 = 0). The equation of motion for the gauge field fluctuations Wm reads

0 = 1

g2
DyFmy +

i

g2
[�,Dm�] +

i

2
(HDmH † − DmHH †). (3.121)

After a long calculation we obtain the gauge field in terms of the matrix S defined in (3.5) and
the variations δm with respect to chiral scalar fields and δ

†
m with respect to anti-chiral scalar

fields

Wm = i
(
(δmS†)S†−1 − S−1

(
δ†mS

))
, (3.122)

δm ≡ (∂mφα)
∂

∂φα
, δ†m ≡ (∂mφα∗)

∂

∂φα∗ . (3.123)

Similarly we obtain other fluctuations induced to order λ

DmH = S†δm(�−1H0) eMy, Dm� + iFmy = S†δm(�−1∂y�)S†−1. (3.124)

The effective Lagrangian is obtained by substituting equations (3.122) and (3.124) to the
fundamental Lagrangian and by integrating over the co-dimension y of the walls

Lwall + Tw =
∫

dy Tr

[
DmHDmH † +

1

g2

(
Dm� − iFm

y

)
(Dm� + iFmy)

]
=

∫
dy Tr

[
�δm(�−1H0) e2Myδ†m

(
H

†
0 �−1

)
+

1

g2
�δm(�−1∂y�)�−1δ†m(∂y��−1)

]
=

∫
dy ReTr

[
cδm

(
�−1δ†m�0

)
+

∂2
y

2g2

(
(δm�)�−1

(
δ†m�

)
�−1

)]

=
∫

dy δmδ†m

[(
c − ∂2

y

g2

)
log det � +

1

2g2
Tr(�−1∂y�)2

]

− 1

g2
Re Tr

[
�−1�′δm

(
�−1δ†m�

)]∣∣∣∣∞
−∞

≡ δmδ†mK(φ, φ∗) = Kij (φ, φ∗)∂mφi∂mφj∗, (3.125)

where Tw is the tension of the (multi-)wall corresponding to the classical action of the
background solution. This Kähler metric can be derived from the following Kähler potential
for the moduli chiral superfields φ, φ∗ of the preserved four supersymmetry

K(φ, φ∗) =
∫

dy

[
c log det � +

1

2g2
Tr(�−1∂y�)2

]
. (3.126)

This effective Lagrangian contains both NG as well as QNG moduli fields. Equation (3.126)
is manifestly invariant under the local U(NC) gauge transformation. Under the V -equivalence
transformation of H0 with an arbitrary NC × NC matrix of chiral superfield �(x, θ, θ̄ ), given
by H0 → H0

′ = e�H0 with V = e�, the Kähler potential receives a Kähler transformation
from equation (3.11):

log det � → log det � + det � + det �†. (3.127)

Since the purely chiral superfield log det � or anti-chiral superfield log det �† does not
contribute to the effective Lagrangian. It is worth pointing out that, if we regard the �

as dynamical variables, the above Kähler potential serves as a Lagrangian from which the
master equation (3.8) for � can be derived. This fact can be understood most easily by
means of superfield approach which enable us to rewrite the Lagrangian in terms of only
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� after solving the hypermultiplet part of the equations of motion in the slow-movement
approximation [14].

For the infinite gauge coupling limit g → ∞, the effective Lagrangian for (multi) domain
walls reduces to

Lg2→∞
walls = c

∫
d4θ

∫
dy log det �0, �0 = 1

c
H0 e2MyH0

†. (3.128)

3.3.2. Effective Lagrangian on vortices. In the case of vortices, we have only single mass
scale. Therefore small-movement approximation is valid when

λ � g
√

c. (3.129)

The equation of motion for the gauge field fluctuations becomes

0 = 1

g2
(DxFmx + DyFmy) +

i

2
(HDmH † − DmHH †). (3.130)

The solution Wm is given by the same formula (3.122) as in the wall case. Other fluctuations
induced to order λ are similarly given by

DmH = S†δm(�−1H0). (3.131)

By substituting these solutions (3.122) and (3.131) to the fundamental Lagrangian and by
integrating over the co-dimension x, y of the vortices, the effective Lagrangian on the vortex
world volume is obtained in terms of the matrix � for vortices

Lvortex =
∫

d2x

[
δmδ†mc log det � +

4

g2
Tr

{
∂̄z(δm��−1)δ†m(∂z��−1)

− ∂̄z(∂z��−1)δ†m(δm��−1)
}]

, (3.132)

where z ≡ x1 + ix2 and the variation δm and its conjugate δ
†
m act on complex moduli fields

as δm� = ∑
α ∂mφα(δ�/δφα) and δ

†
m� = ∑

α ∂mφα∗(δ�/δφα∗), respectively. This is a
nonlinear sigma model with the Kähler metric which can be obtained from the following
Kähler potential

K =
∫

d2x Tr

[
−2cV + e2V �0 +

16

g2

∫ 1

0
dt

∫ t

0
ds ∂̄V e2sLV ∂V

]
, (3.133)

where V ≡ − 1
2 log �,�0 ≡ c−1H0H

†
0 and the operation LV is defined by

LV × X = [V,X]. (3.134)

This Kähler potential can be derived from the superfield formalism straightforwardly [14]
without going through the Kähler metric in equation (3.132). The ANO case is reduced to the
results in [68–70].

In the case of a single vortex, the integration in the Lagrangian (3.133) can be performed
explicitly to give

Ksingle vortex = πc|z0|2 +
4π

g2
log

(
1 +

N−1∑
i=1

|bi |2
)

, (3.135)

in accord with the symmetry argument. Here z0 is the position of the vortex, and bi are the
inhomogeneous coordinates of the CP NF−1 as the orientational moduli.

Let us consider the limit of strong gauge coupling, where the gauge theory with NF > NC

reduces to the nonlinear sigma model on the cotangent bundle over the Grassmann manifold
T ∗GNF,NC . Then the semi-local vortices of the NF > NC case for finite gauge couplings
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become sigma-model lumps as explained in section 3.2.5. Since the second term in the
effective Lagrangian (3.132) for the vortices vanishes in this limit, the Kähler potential of the
effective Lagrangian on the world volume of nonlinear sigma model lumps as

Klumps = c

∫
d2x log det �0, �0 = 1

c
H0H

†
0 . (3.136)

This form of the Kähler potential has been obtained previously [72, 73] in the case of the
CP NF−1 lumps corresponding to the case of the Abelian gauge theory (NC = 1).

4. 1/4 BPS solitons

4.1. 1/4 BPS equations and their solutions

A series of 1/2 BPS equations for solitons in unbroken or Coulomb phases of non-Abelian
gauge theories are well known: instantons, monopoles, the Hitchin system which have co-
dimensions 4, 3 and 2, respectively [18, 22]. The Hitchin system is known to admit no finite
energy solutions but, as we show in the next subsection, we can realize finite energy solutions
in a finite region and so call them Hitchin vortices. Monopoles and Hitchin vortices can be
obtained by dimensional reductions of instantons.

When these solitons are put into the Higgs phase, vortices and walls in sections 3.1 and
3.2 are attached to these solitons. For instance, magnetic flux coming out of a monopole must
be squeezed into vortex tubes by the Meissner effect resulting in two vortices in the opposite
direction attached to the monopole. This composite soliton can be regarded as a kink on the
world volume of a vortex [103]. Similarly instantons in the Higgs phase can be realized as
vortices on a vortex [13], and the Hitchin vortex can be realized at a junction of walls [8, 9].
These composite solitons preserve 1/4 of supersymmetry and can be derived from instantons
in the Higgs phase by either simple or Scherk–Schwarz (SS) dimensional reduction.

In this section we systematically derive the 1/4 BPS equations, the Bogomol’nyi energy
bound and formal solutions, and describe generic structure of the moduli space of these
composite solitons by our moduli matrix approach. The instanton–vortex–vortex (IVV)
system, the monopole–vortex–wall (MVW) system and the Hitchin-wall–wall (HWW) system
depend on coordinates along directions (co-dimensions) denoted by ×, and have the world
volume whose spatial part is denoted by ‘©’ as follows:

IVV (d = 5, 6) 1 2 3 4 MVW (d = 4, 5) 1 2 3 HWW (d = 3, 4) 1 3

Instantons × × × × Monopoles × × × Hitchin vortices × ×
Vortices × × © © Vortices × × © Walls × ©
Vortices © © × × Walls © © × Walls © ×

For the largest dimensions of the fundamental theory for each composite soliton, namely
d = 6, 5, 4 for IVV, MVW or HWW, respectively, another world-volume direction x5 is
present, but is not written explicitly. Since we are interested in static solutions, we are allowed
to choose W0 = W5 = 0. The topological charges are also obtained by the dimensional
reductions and are classified by the sign of their contributions to the energy density as
summarized below. It has been recently found that Abelian gauge theories admit negative
energy objects with the instanton charge localized at intersection of vortices [13], those with
the monopole charge at junctions of vortices and walls [11, 12], and those with the Hitchin
charge at junctions of walls [8, 9]. In particular the first two are called intersections and
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boojums, respectively.

Dim\charge Positive Negative

d = 5, 6 instantons Instantons inside vortices Intersectons
d = 4, 5 monopole Monopoles attached by vortices Boojums
d = 3, 4 Hitchin Non-Abelian wall junctions Abelian wall junctions

4.1.1. Instanton–vortex system. The 1/4 BPS equations can be derived by performing the
Bogomol’nyi completion of the energy density as follows [13, 106],

E = Tr

[
1

2g2
FmnFmn + DmH(DmH)† +

1

g2
(Y 3)2

]
= Tr

[
1

g2
{(F13 − F24)

2 + (F14 + F23)
2 + (F12 + F34 + Y 3)2} + (D1H + iD2H)(D1H

+ iD2H)† + (D3H + iD4H)(D3H + iD4H)† +
1

2g2
FmnF̃mn − c(F12 + F34) + ∂mJm

]
� Tr

[
1

2g2
FmnF̃mn − c(F12 + F34) + ∂mJm

]
, (4.1)

where m, n, k, l = 1, 2, 3, 4 and W 0 = W 5 = 0 is chosen. The above energy density is
minimized if the following set of the first-order differential equations is satisfied:

F13 − F24 = 0, F14 + F23 = 0, (4.2)

F12 + F34 = −Y3, (4.3)

D1H + iD2H = 0, D3H + iD4H = 0. (4.4)

We call a set of these as the self-dual Yang–Mills–Higgs (SDYM-Higgs) equation. This
equation was also obtained by mathematicians [114–116] and is simply called the vortex
equation although this contains instantons also. It has been shown recently in [124] that this
set of equations can be derived (at least in the case of U(1) gauge group) from the Donaldson–
Uhlenbeck–Yau equations on C3 [125] by dimensional reduction on S2. It is easy to recognize
that these equations are a combination of the 1/2 BPS equations for constituent solitons.
They can also be derived from the requirement of preserving the 1/4 of supersymmetry
defined by the following set of three projection operators for supertransformation parameters
εiγ 05εi = −εi, γ 12(iσ3ε)

i = −εi, γ 34(iσ3ε)
i = −εi , only two of which are independent. The

first projection corresponds to the supersymmetry preserved by instantons with co-dimensions
in x1–x2–x3–x4, the second and the third projections correspond to vortices with co-dimensions
x1–x2 and x3–x4 planes, respectively. The Bogomol’nyi bound TIVV for the energy density of
the 1/4 BPS composite solitons can be rewritten as a sum of three topological charges

TIVV = I1234 + V12v34 + V34v12, (4.5)

where we have defined

I1234 ≡ 1

4g2

∫
d4x Tr(εmnklFmnFkl), (4.6)

Vij ≡ −c

∫
dxi dxj Fij . (4.7)
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Here I1234 is the mass of the instantons and Vij is that of vortices with co-dimensions in the
xi–xj plane and vkl = ∫

dxk dxl is the xk–xl world volume of vortices. The world-volume
integration has also the x5 direction in the case of the fundamental theory in d = 6.

Let us introduce the complex coordinates

z ≡ x1 + ix2, w ≡ x3 + ix4 (4.8)

and the corresponding components for gauge fields

W̄z ≡ 1
2 (W1 + iW2), W̄w ≡ 1

2 (W3 + iW4). (4.9)

It is crucial to recognize that equation (4.2) are the integrability conditions for the existence
of the following solutions of equation (4.4)

W̄z = −iS−1∂̄zS, W̄w = −iS−1∂̄wS, H = S−1H0(z, w) (4.10)

with S(z, z̄, w, w̄) ∈ GL(NC, C). The solution is characterized by an NC × NF matrix
function H0(z, w) whose components are holomorphic with respect to both z and w. We call
this H0(z, w) as the moduli matrix for the instanton–vortex–vortex system. By introducing a
U(NC) gauge invariant matrix

�(z, z̄, w, w̄) ≡ SS† (4.11)

as in the 1/2 BPS cases, we can rewrite the remaining equation (4.3) as [13]

4∂z(�
−1∂̄z�) + 4∂w(�−1∂̄w�) = cg2(1NC − �−1�0), c�0 ≡ H0H

†
0 , (4.12)

which we call the master equation for the instanton–vortex–vortex system. When the Higgs
fields are decoupled by putting c = 0 and H0 = 0, this equation reduces to the so-called
Yang’s equation [126], in the form of the left-hand side of (4.12) being equal to zero. The
existence and uniqueness of a solution of the master equation (4.12) was rigorously proved
in [115, 116] in the form of the Hitchin–Kobayashi correspondence, at least when the base
manifold is compact Kähler manifold instead of C2 in our case. We simply expect that this
holds for C2 once the moduli matrix H0(z, w) is given.

Similarly to the 1/2 BPS cases, two moduli matrices related by the following
V -equivalence relation gives identical physics

H0 ∼ H ′
0 = V (z,w)H0, S ∼ S ′ = V (z,w)S, (4.13)

where V (z,w) ∈ GL(NC, C) has components holomorphic with respect to both z and w.
Therefore the total moduli space of this system is the quotient divided by ∼ defined in the
V -equivalence relation (4.13)

Mtotal
IVV ≡ {H0|C2 → M(NC × NF, C), ∂̄zH0 = 0, ∂̄wH0 = 0}/ ∼ . (4.14)

Under the V -equivalence relation, � transforms as � ∼ V �V †.

4.1.2. Monopole–vortex–wall system. We can obtain 1/4 BPS equations for the monopole–
vortex–wall system by performing the SS reduction along the x4(or x3) direction in
equations (4.2)–(4.4):

D2�4 − F31 = 0, D1�4 − F23 = 0, (4.15)

D3�4 − F12 − g2

2
(c1NC − HH †) = 0, (4.16)

D1H + iD2H = 0, D3H + �4H − HM4 = 0, (4.17)

where the mass parameter Mp is obtained by (SS) twisting the phase in compactifying along
the xp direction. These equations describe composite states of monopoles with co-dimensions
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in x1–x2–x3, vortices with co-dimensions in the x1–x2 plane and walls perpendicular to the x3

direction. These equations were originally found in [103] without walls and later in [11] with
walls. The Bogomol’nyi energy bound of this system is also obtained by the SS reduction of
equation (4.5) as

EMVW = M123 + V12v3 + W3,4v12, (4.18)

where we have defined

M123 ≡ 2

g2

∫
d3x Tr[εmnk∂k(Fmn�4)], (4.19)

W3,4 ≡ c

∫
∂3(Tr �4). (4.20)

M123 denotes the mass of the monopoles and W3,4 denotes the mass of walls perpendicular to
the x3 direction with the mass matrix M4 to specify the tension. V12 is defined in equation (4.7).
Here a check over the suffix in I1234̌ denotes to omit that reduced direction, and v3 = ∫

dx3 is
the x3 world volume of vortices.

Since equation (4.15) provides the integrability conditions, equations (4.17) are solved
by

W̄z = −iS−1∂̄zS, W3 − i�4 = −iS−1∂3S, H = S−1H0(z) eM4x
3
, (4.21)

with S(z, z̄, x3) ∈ GL(NC, C) and H0(z) is the moduli matrix for the monopole–vortex–wall
system, which is holomorphic with respect to only z, after the eM4x

3
factor is extracted. The

V -equivalence relation ∼ for this system becomes

H0 ∼ H ′
0 = V (z)H0, S ∼ S ′ = V (z)S, (4.22)

where V (z) ∈ GL(NC, C) has components holomorphic with respect to only z. The total
moduli space of this system is the quotient by this V -equivalence relation ∼

Mtotal
MVW ≡ {H0|C → M(NC × NF, C), ∂̄zH0 = 0}/ ∼ . (4.23)

In terms of a gauge invariant matrix

�(z, z̄, x3) ≡ SS†, (4.24)

equation (4.16) can be converted to the master equation of this system [11]

4∂z(�
−1∂̄z�) + ∂3(�

−1∂3�) = cg2(1NC − �−1�0), c�0 ≡ H0 e2M4x
3
H

†
0 . (4.25)

4.1.3. Wall webs. A further SS reduction in equations (4.15)–(4.17) along the x2(or x1)
direction gives another set of 1/4 BPS equations [8, 9]

F13 − i[�2, �4] = 0, D1�4 − D3�2 = 0, (4.26)

D1�2 + D3�4 = Y3, (4.27)

D1H + �2H − HM2 = 0, D3H + �4H − HM4 = 0. (4.28)

Note that we do not perform the SS reduction along the x3 direction. These equations describe
composite states of Hitchin vortices with co-dimensions in the x1–x3 plane and webs of walls
as straight lines in the x1–x3 plane. The Bogomol’nyi energy bound of this system is given by

THWW = H13 + W1,2v3 + W3,4v1 (4.29)
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where we have defined

H12 ≡ 8

g2

∫
d2x Tr[∂[1((D3]�4)�2)]. (4.30)

This is the mass of solitons in the Hitchin system. It is also called Y-charge in the literature,
especially in the context of the Abelian gauge theory.

Since equation (4.26) provides the integrability conditions, equations (4.28) are solved
by

W1 − i�2 = −iS−1∂1S, W3 − i�4 = −iS−1∂3S, H = S−1H0 eM2x
1+M4x

3
, (4.31)

where S(x1, x3) ∈ GL(NC, C) and the mere constant complex matrix H0 is the moduli matrix
for the Hitchin-wall–wall system. Because of the V -equivalence relation

H0 ∼ H ′
0 = V H0, S ∼ S ′ = V S, V ∈ GL(NC, C), (4.32)

the total moduli space of this system is the complex Grassmann manifold

Mtotal
HWW ≡ {H0|H0 ∼ V H0, V ∈ GL(NC, C)} � GNF,NC . (4.33)

This total moduli space is isomorphic to that of the 1/2 BPS walls. In terms of a gauge
invariant matrix

�(x1, x3) ≡ SS†, (4.34)

equation (4.27) can be recast into the master equation [8, 9]

∂1(�
−1∂1�) + ∂3(�

−1∂3�) = cg2(1NC − �−1�0), c�0 ≡ H0 e2M2x
1+2M4x

3
H

†
0 . (4.35)

4.1.4. Summary. In the strong gauge coupling limit in theories with NF > NC, the master
equations (4.12), (4.25) and (4.35) can be solved algebraically as

�g2→∞ = �0. (4.36)

We thus obtain exact solutions in all the systems. In this limit the total moduli spaces of 1/4
BPS systems are reduced, as in equation (3.112), to

Mtotal
IVV

∣∣
g2→∞ � {

H0|C2 → GNF,NC , ∂̄zH0 = ∂̄wH0 = 0
}
,

Mtotal
MVW

∣∣
g2→∞ � {

H0|C → GNF,NC , ∂̄zH0 = 0
}
,

Mtotal
HVV

∣∣
g2→∞ � GNF,NC .

(4.37)

The third one is isomorphic to the corresponding one at finite gauge coupling, while the first
two develop small lump singularities as the case of semi-local vortices in section 3.2.4. These
small lump singularities are resolved in Mtotal

MVW at finite gauge coupling by ANO vortices, but
it is not the case in Mtotal

IVV which still contains small instanton singularities.
We have seen that 1/4 BPS systems and their BPS equations and charges are related by

the SS dimensional reduction. Accordingly we obtain the relations among moduli matrices
H IVV

0 (z, w) of the instanton–vortex–vortex system, H MVW
0 (z) of the monopole–vortex–wall

system, and H HWW
0 of the Hitchin-wall–wall system. The construction methods (4.10), (4.21)

and (4.31) in addition to the SS reductions reveal the following relations among moduli
matrices:

H IVV
0 (z, w)

∣∣
MVW = H MVW

0 (z) eM4w, H MVW
0 (z)

∣∣
HWW = H HWW

0 eM2z. (4.38)

Namely, a particular dependence of the instanton–vortex–vortex moduli matrix H IVV
0 (z, w)

on w provides the monopole–vortex–wall moduli matrix H MVW
0 , and a similar particular

dependence of the monopole–vortex–wall moduli matrix H MVW
0 (z) on z gives the Hitchin
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Figure 10. ‘SSDR’ and ‘DR’ denote the Scherk–Schwarz and ordinary dimensional reductions,
respectively. Systems and their equations and charges are related by the SS and/or ordinary
dimensional reductions.

vortex–wall–wall moduli matrix H HWW
0 . Also 1/2 BPS systems of vortices and domain walls

can be obtained by ordinary dimensional reduction with respect to z, z̄ (or w, w̄) from the
instanton–vortex system and the monopole–vortex–wall system, respectively. In this case, the
moduli matrices are obtained by just throwing away the dependence to z or w:

H IVV
0 (z, w)

∣∣
V = H V

0 (z), H MVW
0 (z)

∣∣
W = H W

0 . (4.39)

We summarize the relations with all 1/2 and 1/4 BPS systems in figure 10. One can easily
recognizes that understanding the moduli matrix H IVV

0 (z, w) of the instanton–vortex–vortex
system contains understanding all the systems.

4.2. Wall junctions

We will investigate the 1/4 BPS state of the domain walls and their junctions which are
solutions of the 1/4 BPS equations (4.26)–(4.28). To simplify notation in this section, we
choose the x3 and x4 directions in performing the SS reduction, that is, we exchange the
x3 direction with the x2 direction in section 4.1.3. We work in the supersymmetric U(NC)

gauge theory with NF (>NC) hypermultiplets in this section. We turn on fully non-degenerate
complex masses M = M3 + iM4 diag

(
m1 + in1, . . . , mNF + inNF

)
for the hypermultiplets, and

the FI parameter c (>0) in the third direction of the SU(2)R triplet. Most of the arguments
here will follow along the lines of the 1/2 BPS domain walls in section 3.1. For instance,
the total moduli space of webs of walls turns out to be identical to the total moduli space of
walls: GNF,NC = SU(NF)/[SU(NC) × SU(NF − NC) × U(1)]. However, we will find that
decomposition of the total moduli space into various topological sectors exhibits interesting
differences.

4.2.1. Webs of walls in the Abelian gauge theory. Let us first explain the webs of walls in
the Abelian gauge theory (NC = 1) here leaving the non-Abelian gauge theory in the next
subsection. As explained in section 2, there exist NF discrete vacua which are labelled by
an integer 〈A〉 with A ∈ {1, 2, . . . , NF}. In section 3.1, we have found solutions of the 1/2
BPS equation (3.2) that interpolate between these discrete vacua and form stable 1/2 BPS
domain walls. Recall that all the domain walls contained in the 1/2 BPS solutions are parallel
and are associated with the relatively real masses for the hypermultiplet scalars. Suppose
that a mass difference between non-vanishing hypermultiplet scalars in two vacua becomes
complex. Even in such a situation, a 1/2 BPS wall can be formed interpolating between
these two vacua. The tension of the domain wall is determined by the magnitude of the mass
difference. However, the normal vector of the wall is no longer along the real axis, and the
wall preserves a different half of supercharges. In the case of complex masses, we can obtain
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walls whose normal vectors are in different directions in a two-dimensional plane. Such a
configuration preserves a quarter of supercharges. Consequently, domain walls can develop
webs of domain walls as 1/4 BPS states. Therefore the 1/2 BPS equations (3.2) are naturally
extended to the 1/4 BPS equations (4.26)–(4.28), once we turn on the complex masses.

Solutions of the 1/4 BPS equations (4.26)–(4.28) are given in terms of the moduli matrix
H0 which is a complex 1 × NF matrix given in equation (4.31) in the case of the Abelian
gauge theory. The configurations of the webs of walls are made from three building blocks;
the vacua, the domain walls and the junctions. Let us first explain how to understand these
building blocks via the moduli matrix H0. The moduli matrix is represented as

H0 = (τ 〈1〉, τ 〈2〉, . . . , τ 〈NF〉), (4.40)

with τ 〈A〉 ∈ C. This can be regarded as the homogeneous coordinate of the total moduli space
CP NF−1 given in equation (4.33) by taking the V -equivalence relation (4.32) into account.
Similarly to equation (3.20) for domain walls, we can define a weight exp(W 〈A〉) of a vacuum
〈A〉 with a linear function W 〈A〉(x1, x2) as

exp(2W 〈A〉(x1, x2)) ≡ exp 2(mAx1 + nAx2 + a〈A〉), (4.41)

a〈A〉 ≡ Re(log τ 〈A〉). (4.42)

As in the case of the parallel walls given in equation (3.22), the energy density of the webs of
walls can, then, be nicely estimated in terms of the weights of vacua in equation (4.41) as

E � c

2

(
∂2

1 + ∂2
2

)
log

(
H0 eM1x

1+M2x
2
H

†
0

)
= c

2

(
∂2

1 + ∂2
2

)
log

∑
〈A〉

e2W 〈A〉(x1,x2)

 . (4.43)

This approximation gives sufficiently accurate profiles away from the cores, although this
is not good near the core of the domain walls. Furthermore this expression becomes exact
at the strong gauge coupling limit. The function log

[∑
〈A〉 e2W 〈A〉]

to be differentiated in
equation (4.43) is an almost piecewise linear function which is well approximated by smoothly
connecting linear functions 2W 〈A〉(x1, x2). Therefore, the energy density (4.43) vanishes in
almost all region except near the transition points between 2W 〈A〉 and 2W 〈B〉. The regions
where the energy density vanishes are nothing but the SUSY vacua and the transition lines
which now spread on the x1–x2 plane correspond to the domain walls dividing such vacuum
domains.

We are now ready to understand the three building blocks via the moduli matrix H0. Let
us first note that the 1/4 BPS equations (4.26)–(4.28) admit solutions of 1/2 BPS equations.
Then both the SUSY vacua and the single domain walls arise as solutions of the 1/4 BPS
equations in terms of the moduli matrices with the same characteristic properties as in the case
of the 1/2 BPS equation (3.2). Recall that the vacuum state 〈A〉 corresponds to the moduli
matrix like equation (3.24)

H0 = (. . . , τ 〈A〉, . . .) ∼ (0, . . . , 0, 1, 0, . . . , 0), (4.44)

and the 1/2 BPS domain wall interpolating two vacua 〈A〉 and 〈B〉 corresponds to the moduli
matrix

H0 = (0, . . . , 0, τ 〈A〉, 0, . . . , 0, τ 〈B〉, 0, . . . , 0), (4.45)

where there are only two non-vanishing weights of the vacua exp(W 〈A〉) and exp(W 〈B〉)
defined in equation (4.41). Similarly to the 1/2 BPS case in equation (3.27) for the domain



Topical Review R357

wall positions, the position of the domain wall can be estimated as the transition line on which
the two weights become equal W 〈A〉 = W 〈B〉:

(mA − mB)x1 + (nA − nB)x2 + a〈A〉 − a〈B〉 = 0. (4.46)

When we turn off the imaginary part of the masses, this reduces to equation (3.27) of the
1/2 BPS single wall. The complex masses of the hypermultiplets determine the angle of
the domain wall in the x1–x2 plane and its position is given by difference of the parameters
a〈A〉 − a〈B〉. Note that it was important to keep track of the ordering of the real masses in the
case of parallel walls in section 3.1. Due to the ordering of the real masses, the single walls
are classified into two types: elementary and non-elementary. However, the ordering is now
meaningless in the space of the complex masses. Consequently, all the single walls become
elementary walls in the case of the fully non-degenerate complex masses. The following
tension vector is parallel to the domain wall and its magnitude gives the tension (per unit
length) of the domain wall9

�T 〈A〉〈B〉 = c(nB − nA,mA − mB). (4.47)

Note that the first component of the tension is related to the central charge Z1 and Z2 given in
equation (4.29).

The difference between the 1/2 BPS solution (4.31) and the 1/4 BPS solutions (4.31)
first occurs when we consider the moduli matrix with three nonzero elements

H0 = (0, . . . , 0, τ 〈A〉, 0, . . . , 0, τ 〈B〉, 0, . . . , 0, τ 〈C〉, 0, . . . , 0). (4.48)

As already mentioned in section 3.1, this moduli matrix with the real masses describes
the two parallel walls which divides three vacuum domains 〈A〉, 〈B〉 and 〈C〉. However,
equation (4.46) shows that the complex masses change the angle of the walls. Therefore, the
three walls 〈A〉〈B〉, 〈B〉〈C〉 and 〈C〉〈A〉 should meet at a point to form a 3-pronged junction.
Positions of component walls of the 3-pronged junction can be identified by the equal weight
condition of two vacua as given in equation (4.46). Furthermore, the position of the domain
wall junction is identified as a point where all the three weights become equal

W 〈A〉(x1, x2) = W 〈B〉(x1, x2) = W 〈C〉(x1, x2). (4.49)

One can easily show that the tension vectors of the domain walls given in equation (4.47) are
balanced each other, so that the junction is stable:

�T 〈A〉〈B〉 + �T 〈B〉〈C〉 + �T 〈C〉〈A〉 = �0. (4.50)

This condition of the balance of forces is assured by the fact that the central charges (Z1, Z2)

of three constituent walls meeting at the junction sum up to zero. Besides the central charges
(Z1, Z2) associated with the constituent walls, the junction has another characteristic central
charge Y in equation (4.29). The Y-charge can be exactly calculated as

YAbelian = − 2

g2
|( �µA − �µC) × ( �µB − �µC)|, (4.51)

where the cross means the exterior product of 2-vector µA = (mA, nA) giving a scalar. Note
that the Y-charge of the junction in the Abelian gauge theory always gives negative contribution
to the total energy, which is understood as the binding energy of the domain walls meeting at
the junction point.

The set of variables {τ 〈A〉, τ 〈B〉, τ 〈C〉} in equation (4.48) describes the moduli space of
three pronged junctions. It is just a homogeneous coordinate of CP 2 submanifold of the total
moduli space CP NF−1. Let us illustrate how this CP 2 manifold is decomposed into several

9 Here the sign of the tension vector is merely a convention.
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Figure 11. Building blocks of the webs of walls in the Abelian gauge theory.

topological sectors. To obtain the moduli space of a genuine 3-pronged junction, we have to
remove the following subspaces: τ 〈A〉 = 0, τ 〈B〉 = 0 and τ 〈C〉 = 0 from CP 2, because such
subspaces result from different boundary conditions due to the limits where one or two of
three domain walls are taken to spatial infinity. Namely, CP 2 has three CP 1 submanifolds
parametrized by CP 1

〈�C〉 = {τ 〈A〉, τ 〈B〉, 0}, CP 1
〈�A〉 = {0, τ 〈B〉, τ 〈C〉} and CP 1

〈�B〉 = {τ 〈A〉, 0, τ 〈C〉},
respectively. Moreover, these submanifolds share the three points {1, 0, 0}, {0, 1, 0} and
{0, 0, 1} corresponding to three vacua. Then the moduli space of the genuine 3-pronged
junction is the open space which is given by subtracting three CP 1 subspaces from CP 2 as

Mjunction = CP 2 −
3⋃

A=1

CP 1
〈�A〉. (4.52)

Each CP 1 subspace consists of two points corresponding to the vacuum states and an open
space C∗ � R × S1 � CP 1 − 2 × CP 0 corresponding to the moduli space of the single
domain wall, as was mentioned above. These are summarized in the following flow diagram
in which the arrow → means τ 〈A〉 → 0, the arrow ↗ means τ 〈C〉 → 0 and the arrow ↘ means
τ 〈B〉 → 0.

3-Pronged junction Single wall Vacuum

{τ 〈A〉, τ 〈B〉, 0} → {0, 1, 0}
↗ ↗↘

{τ 〈A〉, τ 〈B〉, τ 〈C〉} → {0, τ 〈B〉, τ 〈C〉} {1, 0, 0}
↘ ↗↘

{τ 〈A〉, 0, τ 〈C〉} → {0, 0, 1}

CP 2 CP 1 CP0

So far, we examined the three building blocks of the webs of walls: the vacua, the domain
walls and the 3-pronged junctions, as shown in figure 11. The webs of walls are constructed by
putting these building blocks together. In general, the Abelian gauge theory with NF flavours
admits webs of domain walls which divide NF domains of vacua. The moduli matrix for the
general configuration can be parametrized by the homogeneous coordinate of the total moduli
space CP NF−1 as given in equation (4.40)

{τ 〈1〉, τ 〈2〉, . . . , τ 〈NF〉}. (4.53)

The area of each vacuum domain is proportional to the weight of that vacuum in equation (4.41).
The boundary between two adjacent vacuum domains becomes a domain wall whose position
is determined by equating the weights of the two vacua as in equation (4.46). Furthermore, a
junction is formed at the point where the vacuum weights for three vacua become equal as in
equation (4.49). When we let one of the vacuum weights, for instance exp 2W 〈A〉(x1, x2), to
vanish (by taking the limit where τ 〈A〉 → 0), the corresponding vacuum domain 〈A〉 disappears
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Figure 12. The s-channel and the t-channel of webs of walls. The s-channel appears when
a〈1〉 + a〈3〉 > a〈2〉 + a〈4〉 while the t-channel appears when a〈1〉 + a〈3〉 < a〈2〉 + a〈4〉.

in the web configuration. As a result, we have a smaller web configuration which divides
NF − 1 vacua and is described by the moduli matrix for CP NF−2:

{τ 〈1〉, . . . , τ 〈A−1〉, 0, τ 〈A+1〉, . . . , τ 〈NF〉}. (4.54)

Since there are NF submanifolds CP NF−2 in the total moduli space CP NF−1, the moduli space
of the maximal webs of walls is given by

Mmax = CP NF−1 −
NF⋃

A=1

CP
NF−2
〈�A〉 (4.55)

where CP
NF−2
〈�A〉 is a submanifold parametrized by the homogeneous coordinate (4.54).

Let us give an example of webs of walls in NF = 4 model with masses (mA, nA) =
{(1, 0), (1, 1), (0, 1), (0, 0)}. Then we have four linear functions W 〈1〉 = x1 + a〈1〉,W 〈2〉 =
x1 + x2 + a〈2〉,W 〈3〉 = x2 + a〈3〉 and W 〈4〉 = a〈4〉. The shape of the web varies as we change
the moduli parameters a〈A〉 (A = 1, 2, 3, 4). The configuration has two branches which we
called s-channel and t-channel in [8]. The s-channel has an internal wall dividing the vacua
〈1〉 and 〈3〉 while the t-channel has the other internal wall which divides the vacua 〈2〉 and
〈4〉, as shown in figure 12. The s-channel has two junctions, denoted as s1 and s2. The s1
separates three vacua 〈1〉, 〈3〉 and 〈4〉 at (x1, x2) = (a〈4〉 − a〈1〉, a〈4〉 − a〈3〉). The s2 separates
three vacua 〈1〉, 〈2〉 and 〈3〉 at (x1, x2) = (a〈3〉 −a〈2〉, a〈1〉 −a〈2〉). These junctions consistently
appear in the parameter region where a〈1〉 + a〈3〉 > a〈2〉 + a〈4〉. The two junctions s1 and s2
approach each other when we let (a〈1〉 + a〈3〉) − (a〈2〉 + a〈4〉) → 0 as shown in the middle of
figure 12. When a〈2〉 +a〈4〉 grows over a〈1〉 +a〈3〉, the configuration makes a transition from the
s-channel to the t-channel which has another two junctions t1 and t2. The t1 separates three
vacua 〈1〉, 〈2〉 and 〈4〉 at (x1, x2) = (a〈4〉 − a〈1〉, a〈1〉 − a〈2〉). The t2 separates three vacua
〈2〉, 〈3〉 and 〈4〉 at (x1, x2) = (a〈3〉 − a〈2〉, a〈4〉 − a〈3〉). Other examples of the webs of walls
are shown in [8].

4.2.2. Webs of walls in the non-Abelian gauge theory. In this subsection, we will study the
webs of domain walls in the non-Abelian gauge theory (NC > 1), which has NFCNC discrete
vacua labelled by a set of NC different integers 〈A1 · · · Ar · · · ANC〉, as given in section 2.2.
Similarly to the Abelian case, all the 1/4 BPS solutions are given by the moduli matrix H0

which is, now, a complex NC × NF matrix given in equation (4.31). We have found the total
moduli space parametrized by H0 to be the complex Grassmaniann GNF,NC � {H0 ∼ V H0}
with V ∈ GL(NC, C) in equation (4.32). In section 3.1 we have seen that it is also useful to
introduce the Plücker coordinate instead of the moduli matrix H0 itself:

τ 〈{Ar }〉 ≡ det H 〈{Ar }〉
0 . (4.56)
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Here 〈A1 · · ·Ar · · ·ANC〉 is abbreviated as 〈{Ar}〉, and the minor matrix H
〈{Ar }〉
0 is constructed

by picking up the {Ar}th row from the moduli matrix H0. Since the number of determinants
τ 〈{Ar }〉 is NFCNC , which is the same as the number of SUSY vacua, we assemble the Plücker
coordinate in a NFCNC component vector:

{. . . , τ 〈{Ar }〉, . . . , τ 〈{Br }〉, . . .}. (4.57)

Similarly to the weight of the vacuum (4.40) in the Abelian gauge theory, we can define
the weight of the vacuum in the non-Abelian gauge theory by

exp 2W 〈{Ar }〉 ≡ exp 2

(
NC∑
r=1

(
mAr

x1 + nAr
x2) + a〈{Ar }〉

)
, (4.58)

a〈{Ar }〉 + ib〈{Ar }〉 ≡ log τ 〈{Ar }〉, (4.59)

which is a natural extension from equation (3.20) for the case of parallel walls. The energy
density of the webs of walls can be estimated in terms of these weights of vacua as
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We can now find out the structure of the webs in the non-Abelian gauge theory similarly
to the Abelian gauge theory. The webs are also made of the three building blocks: vacua,
single domain walls and their junctions. Similarly to the Abelian case in equation (4.44),
vacua are represented by a single non-vanishing component τ 〈{Ar }〉 in the Plücker coordinate
(4.57): {0, . . . , 0, τ 〈{Ar }〉, 0, . . . , 0} ∼ {0, . . . , 0, 1, 0, . . . , 0}. The domain walls are described
by equation (4.45) in the Abelian gauge theory, whereas the domain walls in the non-
Abelian gauge theory are represented by only two non-vanishing components in the Plücker
coordinate. Namely, the domain wall interpolating the vacua 〈{Ar}〉 and 〈{Br}〉 is given by
{0, . . . , 0, τ 〈{Ar }〉, 0, . . . , 0, τ 〈{Br }〉, 0, . . . , 0}. However, not all the Plücker coordinates are
independent as we have already seen in section 3.1. The Plücker coordinates are constrained
by the Plücker relations (3.33) in order for them to describe the Grassmaniann. For instance,
the Plücker relations does not allow moduli matrix with only two non-vanishing components
τ 〈Ar 〉 whose labels differ in only one element such as 〈· · ·A〉 and 〈· · ·B〉. It follows that no
single domain wall exists interpolating two such vacua.

Locations of domain walls are estimated by comparing weights of the two adjacent vacua
as in equation (4.46): W 〈···A〉 = W 〈···B〉 gives the domain wall interpolating 〈· · ·A〉 and 〈· · ·B〉
to lie

(mA − mB)x1 + (nA − nB)x2 + a〈···A〉 − a〈···B〉 = 0. (4.61)

The 3-pronged junctions of the domain walls in the non-Abelian gauge theory are
described by the Plücker coordinate which has only three non-vanishing components:

{0, . . . , 0, τ 〈{Ar }〉, 0, . . . , 0, τ 〈{Br }〉, 0, . . . , 0, τ 〈{Cr }〉0, . . . , 0}. (4.62)

The position of the 3-pronged junction can be estimated by equating the three vacuum weights
W 〈{Ar }〉 = W 〈{Br }〉 = W 〈{Cr }〉 as equation (4.49). In the previous subsection, we have found that
junctions in the Abelian gauge theory dividing vacua 〈A〉, 〈B〉 and 〈C〉 are always characterized
by the negative contribution to the energy from the topological charge Y (4.51). On the other
hand, there are two kinds of domain wall junctions in the non-Abelian gauge theory. Junctions
of walls are specified by choosing three different vacua 〈{Ar}〉, 〈{Br}〉 and 〈{Cr}〉. In the
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Figure 13. Internal structures of the junctions with g
√

c � |�m + i�n|.

non-Abelian gauge theory, the Plücker relation (3.33) requires any pairs of those three vacua
to have flavour labels which are different only in one colour component. Then there are
two possibilities of choosing three different vacua. One possibility is the junction which
separates three vacua with the same flavours except one colour component: 〈· · ·A〉, 〈· · ·B〉
and 〈· · ·C〉. The other is that dividing a set of vacua with the same flavour labels except two
colour component: 〈· · ·AB〉, 〈· · ·BC〉 and 〈· · ·CA〉. The former (latter) is called the Abelian
(non-Abelian) junction. The Abelian junction dividing the vacua 〈· · ·A〉, 〈· · ·B〉 and 〈· · ·C〉 is
essentially the same as the junction in the Abelian gauge theory dividing the vacua 〈A〉, 〈B〉
and 〈C〉. Actually the topological charge is the same as that given in equation (4.51), namely it
is negative and should be interpreted as the binding energy of the domain walls. In contrast, the
non-Abelian junction separating the three vacuum domains 〈· · ·AB〉, 〈· · ·BC〉 and 〈· · ·CA〉 is
essentially the same as the junction dividing three vacua 〈AB〉, 〈BC〉 and 〈CA〉 in the U(2)

gauge theory. Note that the non-Abelian junctions do not exist in the Abelian gauge theory.
The remarkable property of the non-Abelian junction is that the topological Y-charge given in
equation (4.29) always contribute positively to the energy density, so that it cannot be regarded
as the binding energy, in contrast to the Abelian Y-charge

Ynon-Abelian = 2

g2
|( �µA − �µC) × ( �µB − �µC)| > 0. (4.63)

In order to understand the origin of negative and positive Y-charges, we find it useful to
pay attention to the internal structures of the junction points of the domain walls. To this
end, let us consider the model with NF = 4 and NC = 2 which has 4C2 = 6 discrete vacua
〈12〉, 〈23〉, 〈13〉, 〈14〉, 〈24〉 and 〈34〉. The 1/4 BPS wall junction interpolating the three vacua
〈14〉, 〈24〉 and 〈34〉 is the Abelian junction while that interpolating 〈12〉, 〈23〉 and 〈13〉 is
the non-Abelian junction. Internal structures of these junctions are schematically shown in
figure 13. The left of figure 13 shows the Abelian junction and the right shows the non-
Abelian junction. As explained in section 3.1, each component domain wall of the junction
has three-layer structure in the weak gauge coupling region (g

√
c � |�m+i�n|); see figure 1.

The same U(1) subgroup is recovered in all three middle layers of the Abelian junction, as
denoted by 〈4〉. They are connected at the junction point so that the middle layer of the wall
junction is also in the same phase 〈4〉 as can be seen in the left of figure 13. On the other hand,
the non-Abelian junction has a complicated internal structure as shown in the right of figure 13.
Although it also separates three different vacua 〈12〉, 〈23〉 and 〈13〉, their middle layers preserve
different U(1) subgroups, 〈1〉, 〈2〉 and 〈3〉 as in the right of figure 13. However, all the
hypermultiplet scalars H vanish when all three middle layers overlap near the junction point,
so that only the U(2) vector multiplet scalar � is active there. The key observation is that the
1/4 BPS equations given in equations (4.26)–(4.28) reduce to the 1/2 BPS Hitchin equations

F12 = i[�3, �4], D1�4 − D2�3 = 0, D1�3 + D2�4 = 0, (4.64)
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Figure 14. Building blocks of the webs of walls in the non-Abelian gauge theory.

Figure 15. Accidental 4-pronged junction and a trivial intersection of walls.

if we pick up the traceless part of equations (4.26)–(4.28) and discard the hypermultiplet
scalars H. This reduction occurs at the core of the non-Abelian junction, since hypermultiplet
scalars vanish as we mentioned above. Therefore the system reduces to the Hitchin system of
SU(2) subgroup in the middle of the non-Abelian junction. Furthermore, the charge of the
non-Abelian junction given in equation (4.29) completely agrees with the charge of the Hitchin
system [15]. Thus we conclude that the positive Y-charges of the non-Abelian junctions given
in equation (4.63) are the charges of the Hitchin system.

Now, we have found four kinds of building blocks for the webs of walls in the non-Abelian
gauge theory. We have the SUSY vacua, the domain walls interpolating these discrete vacua
and the Abelian and the non-Abelian junctions. These are shown in figure 14. There is one
more fundamental object in the non-Abelian gauge theory. It is the trivial intersection, namely
the 4-pronged junction without a junction charge, of the domain walls. Such a 4-pronged
junction accidentally, of course, appears in the Abelian gauge theory as a special configuration
in which two different 3-pronged junctions get together. However, these are decomposed
to two 3-pronged junctions by varying moduli parameters, so we should not regard it as the
building block of the webs in the Abelian gauge theory. We have already met an example in
figure 12. There the s-channel and t-channel are interchanged when the moduli parameters
accidentally satisfy a〈1〉+a〈3〉 = a〈2〉+a〈4〉. On the other hand, the configuration dividing a set of
four vacua, for instance 〈12〉, 〈34〉, 〈13〉 and 〈24〉, has to obey the Plücker relation (3.33). The
Plücker relation restricts the moduli parameters under the condition a〈12〉 +a〈34〉 = a〈13〉 +a〈24〉.
So all the domain walls of the configuration certainly get together at a point, as shown in
the right of figure 15. One can easily show that the Y-charge in equation (4.29) around this
4-pronged junction always vanishes, so this is the trivial intersection of the two domain walls
without any kinds of additional junction charge apart from the wall tension.

4.2.3. Rules of construction. Now we are ready to construct the webs of walls both in the
Abelian and the non-Abelian gauge theories. As is clear from equations (4.46) and (4.61),
slopes of walls are determined by the mass parameters (mA, nA) for the hypermultiplet scalars.
In general great pains are needed to clarify shapes of the webs corresponding to every points
on the moduli space GNF,NC as the number of flavours NF increases. A nice tool to overcome
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(a) (b) (c) (d) (e)

Figure 16. Building blocks of the grid diagrams.

this complication is provided by the grid diagram [8, 9], where informations are discarded
about actual positions of each walls and their junctions. Namely, we try to capture the webs
in the complex Tr � = Tr(�3 + i�4) plane, instead of considering them in the real space. Let
us start with the SUSY vacua. The VEV of the adjoint scalar in the 〈{Ar}〉 vacuum is given by
� = diag

(
mA1 + inA1 ,mA2 + inA2 , . . . , mANC

+ inANC

)
. Hence the vacuum 〈{Ar}〉 is located at

the point
∑NC

r=1(mAr
+ inAr

) in the Tr � plane, as shown in figure 16(a). Next, domain walls
can be regarded as segments between possible pairs of these points (labelled by 〈· · ·A〉 and
〈· · ·B〉) in the Tr � plane. A nice feature of this representation of walls is that the magnitude
of the tension given in equation (4.47) is proportional to the length of the segment. Moreover,
the dual line which is the vector normal to the segment is parallel to the corresponding domain
wall in the real space and to the tension vector for the wall in equation (4.47). In figure 16(b)
we denote a solid line for a segment connecting two vacua, and denote a broken line for
its dual line parallel to the domain wall in the real space. The Abelian 3-pronged junctions
of domain walls are realized as triangles whose vertices are labelled by 〈· · ·A〉, 〈· · ·B〉 and
〈· · ·C〉 in the Tr � plane as shown in figure 16(c). The non-Abelian 3-pronged junctions are
similarly realized as triangles whose vertices are labelled by 〈· · ·AB〉, 〈· · ·BC〉 and 〈· · ·CA〉
as shown in figure 16(d). Their topological Y-charges given in equations (4.51) and (4.63) are
proportional to areas of the triangles. Furthermore, the equilibrium condition of the tension
vectors of the three components walls given in equation (4.50) is obvious because the tension
vector of the wall connecting two vacua is dual (π/2 rotation) to the vector connecting these
two vacua which forms a closed triangle. Lastly we identify the trivial intersection dividing
the vacua 〈· · ·AB〉, 〈· · ·CD〉, 〈· · ·AC〉 and 〈· · ·BD〉 as a parallelogram like in figure 16(e).
All together they constitute the building blocks for the webs of walls.

The followings are the rules to construct grid diagrams for the webs of walls to assemble
the building blocks:

(i) Determine mass arrangement mA +inA and plot NFCNC vacuum points 〈Ar〉 at
∑NC

r=1(mAr
+

inAr
) in the complex Tr � plane.

(ii) Draw a convex polygon by choosing a set of vacuum points, which determines the
boundary condition of a BPS solution. Here each edge of the convex polygon must be a
1/2 BPS single wall between pairs of the vacuum points 〈· · ·A〉 and 〈· · ·B〉.

(iii) Draw all possible internal segments within the convex polygon describing 1/2 BPS single
walls forbidding any segments to cross.

(iv) Identify Abelian triangles with vertices 〈· · ·A〉, 〈· · ·B〉 and 〈· · ·C〉 to Abelian 3-
pronged junctions. Identify non-Abelian triangles with vertices 〈· · ·AB〉, 〈· · ·BC〉 and
〈· · ·CA〉 to non-Abelian 3-pronged junctions. Identify parallelograms with vertices
〈· · ·AB〉, 〈· · ·CD〉, 〈· · ·AC〉 and 〈· · ·BD〉 to intersections with vanishing Y-charges.

Shapes of the web diagrams in the configuration space can be obtained by drawing a dual
diagram by exchanging points and faces of the grid diagram [8].
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Figure 17. Examples of the grid and the web diagrams for the Abelian webs in the model with
five flavours.

Figure 18. Examples of the grid diagrams in the model with four flavours. Each row uses the
same hypermultiplet mass arrangement which is shown in the NC = 1 case.

In figure 17, we show several examples of the webs in the Abelian gauge theory with
NF = 5 flavours. In general, the grid diagrams have NF = 5 vertices. Some of these are the
vertices of the convex polygon and the others are the internal points inside the polygon. The
shape of the grid diagram is determined by the mass arrangement and there are NF − 2 (= 3)
kinds of the convex polygons according to the number of the internal points inside the convex
polygons; see figure 17. The number of the internal points of the grid diagram is the same as
the number of the loops of the web diagrams in the real space. Then one can easily read the
graphical relation of the configuration as

dimC M = NF = E + L, (4.65)

where E is the number of the external legs and L is the number of the loops in the web diagram.
The webs of walls develop richer species of configurations in the non-Abelian gauge

theories. The number of different kinds of webs is the same as that in the Abelian gauge
theories, namely there are NF–2 kinds of the webs. We show several examples of the grid
diagrams for the model with NF = 4 flavours and various numbers of colours NC = 1, 2, 3
in figure 18. The vacuum points of the grid diagrams of the NC = 1 case shows the values
of hypermultiplet masses directly: the upper one has an internal point, whereas the lower one
does not. The same mass arrangement for each flavour of hypermultiplets is used to draw the
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(a1) mass arrangement and vacua (a2) grid diagrams and web configurations

(b1) mass arrangement and vacua (b2) grid diagrams and web configurations

Figure 19. (a1) and (a2) for the hexagon-type and (b1) and (b2) for the parallelogram-type web.
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Figure 20. Honeycomb lattice of webs of walls.

grid diagrams of NC = 2, 3 cases in the same row of figure 18. Let us finally illustrate an
interesting phenomenon of a transition between webs with different types of junctions such
as Abelian and non-Abelian by changing moduli parameters. We draw two grid diagrams in
the model with NC = 2 and NF = 4 corresponding to two different mass arrangements in
figure 19. One is the hexagon type with no internal points, which is a tree type web diagram.
The other is the parallelogram-type diagram with two internal points, which has a loop. By
varying the moduli parameters of the grid diagrams, we find that the internal structure of web
diagrams changes as shown in figure 19(a2) and (b2): webs with Abelian junctions make
a transition to webs with non-Abelian junctions and vice versa. The changes of the shape
of the webs have been explicitly worked out in terms of the Plücker coordinates τ 〈{Ar }〉 in
equation (4.57) [9]. At the end of this subsection, we give an exact solution in the strong
gauge coupling limit g2 → ∞. As explained in section 4.1, the master equation reduces to just
an algebraic equation. Then we can exactly solve them. In figure 20 we give a complicated
configuration of webs of walls.

Interestingly, solutions of the KP and coupled KP equations were found to contain a very
similar web structure to our solutions of webs of walls [127].
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4.3. Composite of walls, vortices and monopoles

We will focus on another 1/4 BPS composite state of monopoles, vortices and domain walls in
this subsection. The 1/4 BPS equations of this system have already been derived in equations
(4.15)–(4.17). This 1/4 BPS system was studied qualitatively in [12] and lots of interesting
features were found. We found that solutions of them can be described by the moduli matrix
H0(z) which is an NC × NF holomorphic matrix with respect to z = x1 + ix2. Similarly to the
webs of walls dealt with in the previous subsection, the moduli matrix is also a powerful tool
to clarify properties of this 1/4 BPS system [11].

First of all, it should be stressed that the 1/4 BPS equations (4.15)–(4.17) are composite
of the three types of 1/2 BPS solitons: Bi = Di� for monopoles, (D1 + iD2)H = 0, B3 +
g2

2

(
c1NC −HH †) = 0 for vortices and D3H + �H −HM = 0,D3� − g2

2

(
c1NC −HH †) = 0

for domain walls. In this section we omit the subscript ‘4’ of �4 and M4. Solutions of these
1/2 BPS equations, of course, are also solutions of the 1/4 BPS equations (4.15)–(4.17).
When different types of 1/2 BPS solitons coexist, the configuration becomes a 1/4 BPS state
as we will show. There are two kinds of solutions of the 1/4 BPS equations. One is a junction
of two vortices living in the same Higgs vacuum, but with different orientations in the internal
symmetry. This kind of composite soliton does not exist in Abelian gauge theory and is
intrinsically non-Abelian. Since there is a unique vacuum in this case, domain walls do not
appear. So the topological charges characterizing this system are the vortex charge and the
monopole charge

E = −c Tr B3 +
2

g2
Tr ∂m(Bm�), (4.66)

where the first one is the charge of the non-Abelian vortex and the second one is that of
the ordinary t’ Hooft–Polyakov-type monopole in the SU(NC) gauge theory. The monopole
appears at the junction point of two vortices. This configuration is called the monopole in the
Higgs phase which was found in [103]. The other 1/4 BPS state is also a composite state
of vortices, but is now the junction of vortices living in different vacua. So the domain wall
interpolating these vacua is formed. This kind of 1/4 BPS state can exist in Abelian gauge
theory with NF � 2 flavours and is essentially a composite soliton in Abelian gauge theory.
The topological charges characterizing this type of soliton in Abelian gauge theory is given by

E = c∂3� − cB3 +
2

g2
∂m(Bm�), (4.67)

where the first one is the charge of the domain wall, the second one is the charge of the ANO
vortex and the third one is a somewhat strange charge which has a form very similar to the
monopole charge in the SU(NC) gauge theory. This monopole-like charge gives a negative
contribution to the energy density and will be understood as the binding energy (boojum) of
the domain wall and the ANO vortex [11, 12].

4.3.1. Vortices in the massive theories. In this subsection, vortices will play a prominent role.
We have clarified 1/2 BPS vortices in the massless theory in section 3.2. Here we deal with
1/2 BPS vortices in the massive theory with M = diag

(
m1,m2, . . . , mNF

)
, (mA > mA+1).

Let us start with the vortices in the N ≡ NC = NF model. First recall that the massless
(fully degenerate masses) model has the unique colour–flavour locking vacuum given by the
condition

HH † = c1N, �H = 0. (4.68)

The vacuum has the diagonal SU(N)G+F symmetry as explained in section 2. This system
admits the 1/2 BPS vortices which are solutions of the 1/2 BPS equations (3.44) and (3.45).
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Solutions of the 1/2 BPS equations are described by the moduli matrix H0(z) which is an N
by N matrix holomorphic with respect to z as shown in equation (3.49). Note that we need to
keep the additional condition �H = 0 to get regular solutions in the massless theory, although
this condition is trivially satisfied by setting � = 0.

Roughly speaking, the vortex solutions in the non-Abelian gauge theory are obtained
by embedding the Abelian ANO vortex solutions to the moduli matrices in the non-
Abelian case. Then a single vortex solution breaks the SU(N)G+F vacuum symmetry into
U(1) × SU(N − 1), so that the Nambu–Goldstone modes taking values on CP N−1 �
SU(N)G+F/[U(1) × SU(N − 1)] arise as orientational moduli. In terms of the N × N

moduli matrix H0(z) given in equation (3.49), k-vortex solutions are generated by the matrix
whose determinant is of order zk as

τ ≡ det H0(z) =
k∏

i=1

(z − zi) (4.69)

and their orientational moduli, which are the homogeneous coordinate of CP N−1, are defined
by H0(zi) �φi = �0:

�φi
T = (

φ1
i , φ

2
i , . . . , φ

N
i

) ∈ CP N−1. (4.70)

When we turn on the non-degenerate masses M for the hypermultiplet scalars, the vacuum
is still unique but the vacuum condition (4.68) is changed to

HH † = c1N, �H − HM = 0. (4.71)

The second equation requires � = diag(m1,m2, . . . , mN), so that the flavour symmetry
reduces from SU(N) to U(1)N−1. Furthermore U(N) gauge symmetry also reduces to U(1)N

by the VEV of the adjoint scalar (of course, these gauge symmetries are completely broken in
the true vacuum by the VEV of hypermultiplet scalars). This means that there no longer exist
the orientational moduli for the non-Abelian vortices and the system reduces to just N vortices
of the ANO type. In other words, the non-degenerate masses M lift almost all the points of the
massless orientational moduli space CP N−1 except for N fixed points of the U(1)N−1 isometry
which remain as solutions of the massive theory. Actually, the 1/2 BPS equations are not
changed from the massless one given in equations (3.44) and (3.45), and their solutions are
also given by the same form as equation (3.49). However, we have to impose the additional
condition �H − HM = 0 instead of �H = 0, then the moduli matrix can have non-trivial
elements only in their diagonal elements. As a result, the N different ANO vortices live in the
diagonal elements of the moduli matrix as H0(z) = diag

(
H 1

0�(z),H
2
0�(z), . . . , H

N
0�(z)

)
with

HA
0�(z) = aA

∏kA

i=1(z−zi), (A = 1, 2, . . . , N). The orientational moduli in the massive theory
reduce to just N different vectors as

�φi
T = (

φ1
i , φ

2
i , . . . , φ

N
i

) →


(1, 0, 0, . . . , 0, 0) : [1] − vortex,

(0, 1, 0, . . . , 0, 0) : [2] − vortex,

...

(0, 0, 0, . . . , 0, 1) : [N ] − vortex.

(4.72)

Thus we find that N different species of vortices, which we call [A]-vortex, can live in the
unique vacuum of the massive N = NC = NF system. The [A]-vortex is associated with
the U(1) phase of the Ath flavour element HA

0�(z). In figure 21 we show an example of
N = 2 model. The massless moduli space is CP 1 � S2. Almost all of them are lifted by the
non-degenerate masses except for the north and the south poles ([1]- and [2]-vortex) which
remain as solutions of the massive 1/2 BPS equation.



R368 Topical Review

Figure 21. Orientation of non-Abelian vortices.

Let us next consider the non-Abelian semi-local vortices which arise in the massive
theory with the NF flavours being greater than the NC colours. We have investigated the
semi-local vortices in the massless theory in section 3.2.4 and found that they have additional
moduli parameters (size moduli) compared to the ANO vortices in the model with NC = NF

theory. These additional moduli parameters are lifted and only several different species of
ANO vortices remain, because of the same reason as the NF = NC case mentioned above.
In fact, the massless vacuum manifold GrNF,NC shrinks to the NFCNC discrete vacua labelled
by 〈A1A2 · · · ANC〉 = 〈{Ar}〉 by the non-degenerate masses, as explained in section 3.1. The
NC different species of vortices, namely [Ar ]-vortex (r = 1, 2, . . . , NC), can live in each
vacuum. To clear matters, let us consider the semi-local vortex in the Abelian gauge theory.
In the case of the massless theory the moduli matrix for the semi-local vortices are written as
H0(z) = (

H 1
0�(z), . . . , H

NF
0� (z)

)
with HA

0�(z) ≡ aA

∏kA

i=1(z − zi) and the moduli parameters
zi and aA can be understood as positions and sizes of the vortices, respectively. Additionally
there exist non-normalizable moduli parameters which specify the position in the vacuum
manifold as the boundary condition; see section 3.2.4. When we turn on the non-degenerate
masses, the connection between different flavours is turned off: the size moduli and the non-
normalizable moduli are frozen in solutions of the 1/2 BPS semi-local vortices in the massive
theory. Therefore, the allowed moduli matrix is just NF species of the ANO vortices labelled
as [A]-vortex (A = 1, 2, . . . , NF):

H0(z) = (
H 1

0�(z), . . . , H
NF
0� (z)

) →



(
H 1

0�(z), 0, 0, . . . , 0, 0
)
,(

0,H 2
0�(z), 0, . . . , 0, 0

)
,

...(
0, 0, 0, . . . , 0,H

NF
0� (z)

)
.

(4.73)

For example, the massless vacuum manifold of NC = 1 and NF = 2 model is CP 1 � S2

and we can choose each point on the CP 1 as the boundary condition of the semi-local vortex.
However, when the masses are turned on, there are only two choice for the boundary condition,
either the north pole or the south pole, as illustrated in figure 22. Figure 21 for the vortices in
the theory with NC = 2 and NF = 2 appears similar to figure 22 for vortices in the theory with
NC = 1 and NF = 2. However, their properties are very different. The former has the unique
vacuum 〈12〉 and there exist [1]-vortices and [2]-vortices simultaneously in the vacuum. In
contrast, the latter has two discrete vacua 〈1〉 and 〈2〉, and the [1]-vortices can live only in the
vacuum 〈1〉 while the [2]-vortices can in the vacuum 〈2〉.

In the case of the massive model with NF > NC, there are NFCNC discrete vacua. Although
there exist NF species of ANO vortices labelled by [A]-vortex (A = 1, 2, . . . , NF), only
NC of them can live in each vacuum. The vacuum

〈
A1A2 · · · ANC

〉
allows the [Ar ]-vortex

(r = 1, 2, . . . , NC) to live therein. With respect to the moduli matrix, the determinants of the
minor matrices H

〈{Ar }〉
0 characterize the configuration. Namely, kAr

[Ar ]-vortices in the 〈{Ar}〉
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Figure 22. Semi-local vortices in the massive Abelian gauge theory.

Figure 23. Orientation of a non-Abelian vortex.

vacuum is generated by the determinant of the moduli matrix

τ 〈{Ar }〉 = det H 〈{Ar }〉
0 =

kAr∏
i=1

(z − zi), others = 0, (4.74)

like the case of N = NC = NF given in equation (4.69). These variables provide
convenient coordinates of the moduli space and are called the Plücker coordinates as given in
equation (3.19) in section 3.1. Thus we conclude that NC different species of ANO vortices
can exist in every one of the NFCNC vacua in the U(NC) gauge theory with the massive NF

flavours.

4.3.2. Monopoles in the Higgs phase. We begin with the 1/4 BPS states of vortex junctions
in a single vacuum which accompany monopoles as given in equation (4.66). We shall work
in U(2) gauge theory with NF = 2 massive flavours with M = diag(m1,m2), (m1 > m2). As
we saw above, [1]- and [2]-vortices with orientations �φT = (1, 0) and (0, 1) can exist in the
vacuum 〈12〉. The 1/2 BPS vortices containing k1 [1]-vortices and k2 [2]-vortices are given
by the diagonal moduli matrix H0(z) eMx3

in the 1/4 BPS solution (4.21) as

H0(z) eMx3 = diag
(
H 1

0�(z),H
2
0�(z)

)
eMx3

, (4.75)

S(x1, x2, x3) = diag(S1
� (x

1, x2), S2
� (x

1, x2)) eMx3
, (4.76)

with HA
0� = ∏kA

i=1(z − zi). In fact, plugging this solution into the 1/4 BPS equations (4.15)–
(4.17), we find that the equations reduce to the 1/2 BPS equations for the ANO vortices:
∂z∂̄z log �A

� = g2
(
c − (�A

� )−1
∣∣HA

0�

∣∣2) with �A
� ≡ |SA

� |2. Furthermore, the solutions given
in equation (4.21) reduce to the 1/2 BPS solutions given in equation (3.49). Especially the
additional condition �H − HM = 0 is automatically satisfied as

W3 − i� = −i diag(m1,m2). (4.77)

When we turn on the off-diagonal elements of the moduli matrix H0(z) eMx3
given in

equation (4.75), the moduli matrix does not give a 1/2 BPS solution because �H − HM = 0
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is no longer satisfied. Instead, it gives a 1/4 BPS solution satisfying D3H + �H − HM = 0,
which is one of the 1/4 BPS equations (4.15).

To clear matters, let us consider a single vortex configuration k = k1 + k2 = 1. The
general moduli matrix with a unit vorticity k = 1 (det H0(z) = O(z)) is of the form

H0(z) eMx3 =
(

1 b

0 z − z1

)
eMx3 ∼

(
z − z1 0

b′ 1

)
eMx3

, (4.78)

where b, b′ ∈ C and they are related by b = 1/b′ except for b = 0 or b′ = 0. Note
that this moduli matrix is quite similar to that for the single non-Abelian vortex given in
equation (3.68) in the massless theory where the moduli parameter b ∈ CP 1 is the orientational
moduli of the vortex. In the massive theory as mentioned above, the parameter b is no longer
an orientational moduli (only b = 0 and b = ∞ give the ANO vortex solution). Nevertheless,
treating b as the orientation in analogy with the massless model gives us a powerful insight
in understanding the 1/4 BPS solution. To this end, it is useful to rewrite the above moduli
matrix (4.78) as

H0(z) eMx3 = eMx3

(
1 b̃(x3)

0 z − z1

)
∼ eMx3

(
z − z1 0
b̃′(x3) 1

)
, (4.79)

with b̃(x3) ≡ b e−(m1−m2)x
3

and b̃′(x3) ≡ b′ e(m1−m2)x
3
. By absorbing the prefactor eMx3

by the
V -equivalence relation (4.22) at every slice at x3 = const, we can regard this moduli matrix as
the moduli matrix of 1/2 BPS vortices given in equation (3.49). Then the orientational moduli
�φT = (b̃(x3), 1) = (1, b̃′(x3)) depends on the x3 coordinate. This means that the orientation
of the vortex changes along the x3-axis. Since we have chosen m1 − m2 > 0, b̃(x3) → 0
as x3 → +∞ and b̃′(x3) → 0 as x3 → −∞. Therefore, we find that the moduli matrix
(4.78) gives a composite soliton which reduces to [2]-vortex ( �φT = (0, 1)) at x3 = +∞ and
[1]-vortex ( �φT = (1, 0)) at x3 = −∞. Let us next focus on the transition between the [1]-
vortex and [2]-vortex. As we mentioned above, the transition is accompanied by the monopole
charge; see equation (4.66). We can directly calculate the monopole charge by taking account
of limits where B3 = diag(B3�, 0) at x3 → −∞ and B3 = diag(0, B3�) at x3 → +∞ while
B1 = B2 = 0 and � = diag(m1,m2) both at x3 = ±∞. Here B3� is the flux of the single
ANO vortex defined by B3� = − 1

2

(
∂2

1 + ∂2
2

)
�� and it satisfies

∫
B3� dx1 dx2 = −2π . Then

the monopole charge M+ is calculated as

M+ = 2

g2

∫
d3x ∂m Tr(Bm�)

= 2

g2
Tr

[{∫
R2

+

d2x

(
0 0
0 B3�

)
−

∫
R2−

d2x

(
B3� 0
0 0

)}(
m1 0
0 m2

)]

= 4π

g2
(m1 − m2) > 0 (4.80)

where R2
± are the boundary surface at x3 = ±∞; see figure 24. Note that the ordering of the

mass parameters m1 > m2 is not important here. In fact, if we reconsider this system with
the opposite ordering m2 > m1, we again obtain the monopole with positive definite mass
4π
g2 (m2 − m1) > 0 since the orientation also changes as �φT → (1, 0) at x3 → +∞ and (0, 1)

at x3 → −∞.
Let us next consider the physical meaning of the moduli parameter b in the moduli matrix

(4.78) in the massive theory. At this stage, b̃(x3) = b e−(m1−m2)x
3

can be thought of a quantity
representing how close to the [1]- or [2]-vortex the configuration is. Especially, we found that
b̃ = 0,∞ correspond to [1]-vortex and [2]-vortex, respectively. The transition point b̃ = 1,
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Figure 24. Monopole in the Higgs phase.

Figure 25. Orientation of the vortex and position of the monopole.

Figure 26. Beads of monopoles.

which is the middle point between the north pole and the south pole of CP 1, can be regarded
as the monopole from the view point both of the moduli space and the real space; see figure 25.
So we conclude that b is related to the position of the monopole in the real space as

|b̃(x3)| ≈ 1 ⇔ x3 ≈ 1

m1 − m2
log|b|. (4.81)

Note that the monopole goes away to the spatial infinity when we take the limit of b → 0,∞.
This observation agrees with the previous argument that the moduli matrix (4.78) reduces to
those for the 1/2 BPS vortex given in equation (4.75).

A natural extension of this is multiple monopoles in the Higgs phase which is sometimes
called beads of monopoles. To get such a configuration, we need to consider U(N) gauge
theory with N massive flavours. The vortices in the massless theory have orientational moduli
�φT = ( �bT , 1) ∈ CP N−1, which reduce to N fixed points when we turn on the nondegenerate
masses. Similarly to the case of N = 2, the orientational moduli �b can be understood as
the positions of N − 1 monopoles connecting N different species of the ANO vortices. The
moduli matrix describing the beads of monopoles penetrated by vortices are of the form

H0 eMx3 =
(

1N−1 �b
0 z − z1

)
eMx3 = eMx3

(
1N−1

�̃b(x3)

0 z − z1

)
, (4.82)

where we have defined the orientational vector �φT = ( �̃b(x3)T , 1) with �̃b(x3)T ≡
(b1 e−(m1−mN )x3

, . . . , bN−1 e−(mN−1−mN )x3
). Positions of the monopoles are estimated

by|bA| e−(mA−mN )x3 ≈ |bA+1| e−(mA+1−mN )x3
:

x3 ≈ 1

mA − mA+1
log

∣∣∣∣ bA

bA+1

∣∣∣∣ , (4.83)

where A = 1, 2, . . . , N − 1(bN = 1).
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4.3.3. Boojums: junctions of walls and vortices. Let us next investigate the other composite
1/4 BPS state made of the ANO vortices and the domain walls whose topological charges are
given in equation (4.67). As already mentioned above, this composite soliton is essentially
a 1/4 BPS state in the Abelian gauge theory. The moduli matrix is just an NF component
complex vector in the Abelian gauge theory. Although the moduli matrix is completely
the same as that for the 1/2 BPS semi-local vortex, it is very important to realize that the
moduli matrix is accompanied by the factor eMx3

as given in equation (4.15). The 1/4 BPS
equations (4.15)–(4.17) admit the 1/2 BPS solutions also. Namely, the 1/2 BPS vortices in
the massive theory dealt in section 4.3.1 are solutions of the 1/4 BPS equations. As already
explained, a part of moduli of the semi-local vortices in the massless theory are lost when
they are put into the massive theory. Then the moduli spaces of semi-local vortices are split
into those of the ANO vortices in the massive theory. Indeed, the moduli matrix for the 1/2
BPS solutions turns into that for the NF ANO vortices as given in equation (4.73). However,
due to the additional factor eMx3

, the general moduli matrix which has two or more nonzero
components can give solutions of the BPS equations. But it no longer gives 1/2 BPS solutions
but 1/4 BPS solutions:

H0 eMx3 = (
H 1

0�(z) em1x
3
,H 2

0�(z) em2x
3
, . . . , H

NF
0� (z) emNF x3)

(4.84)

where HA
0�(z) is again the moduli matrix for the ANO vortices defined by HA

0�(z) ≡
aA

∏kA

iA=1

(
z − ziA

)
. We will show that the moduli parameters contained in the general moduli

matrix in equation (4.84) can be reinterpreted as the moduli of the ANO vortices and the
domain walls in the massive theory instead of those of the semi-local vortices in the massless
theory. Note that the set of H0(z) eMx3

can be thought of as the moduli matrix for the domain
walls if we fix the coordinate z, whereas it can be regarded as that for the semi-local vortices
if we fix the coordinate x3. Thus, the moduli parameters in the moduli matrix (4.84) will be
reinterpreted in terms of both the semi-local vortices and the domain walls in the following.

Let us first consider the simplest example of a junction of a vortex and a domain wall in
the NF = 2 theory with the nondegenerate mass M = diag(m1,m2) ordered as m1 > m2. We
focus on a single semi-local vortex given by the moduli matrix H0(z) = (a1(z−z1), a2(z−z2))

where the moduli parameters z1, z2 are the positions and the size of the semi-local vortex, and
the ratio a ≡ a1/a2 ∈ CP 1 corresponds to the position of the wall. In the massive theory this
moduli matrix is multiplied by the additional factor eMx3

and can be reinterpreted as follows,

H0(z) eMx3 ∼ em2x
3
(ã(x3)(z − z1), z − z2)

∼ em1x
3
(z − z1, ã

′(x3)(z − z2)) (4.85)

with ã(x3) ≡ e(m1−m2)x
3
a1/a2 and ã′(x3) ≡ ã(x3)−1. The new parameter ã(x3) again gives

us the boundary condition at the spatial infinity |z| → ∞ but now it varies along the x3-axis
in the massless vacuum manifold CP 1. Since ã → 0 at x3 → −∞, the moduli matrix (4.85)
reduces to that for the 1/2 BPS [2]-vortex sitting on z = z2 at x3 = −∞. On the other hand,
ã′ → 0 at x3 → +∞, then the moduli matrix (4.85) reduces that for the 1/2 BPS [1]-vortex
sitting on z = z1 at x3 = +∞. Thus the parameter ã(x3) gives the flow connecting [1]-vortex
and [2]-vortex. One can easily recognize a similarity between the monopoles in the Higgs
phase in the previous section and this system: the orientational modulus b of the non-Abelian
vortex is promoted to a function b̃ = b e−(m1−m2)x

3
which is reinterpreted as the flow in the

massless moduli space CP 1 while the boundary modulus a of the semi-local vortex is also
promoted to a function ã = a(m1−m2)x

3
which is reinterpreted as the anti-flow of the massless

vacuum manifold CP 1; see figure 27.
As studied in section 4.3.1, the [A]-vortex can live only in the vacuum 〈A〉. So the

transition between [1]-vortex and [2]-vortex necessarily accompanies a transition between 〈1〉
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Figure 27. Boundary condition of the vortex and position of the domain wall.

Figure 28. Two vortices ending on the domain wall from both sides.

and 〈2〉 vacua, namely a domain wall. The position of the domain wall can be estimated by
comparing the weights of vacua |W 〈1〉(z)| ≈ |W 〈2〉(z)| with W 〈A〉(z) ≡ aA(z − zA) emAx3

as
we explained in section 3.1. Then we get the position of the domain wall by

x3(z) ≈ 1

m1 − m2
log

∣∣∣∣a2(z − z2)

a1(z − z1)

∣∣∣∣ → 1

m1 − m2
log

∣∣∣∣a2

a1

∣∣∣∣ (4.86)

as |z| → ∞. Thus, the moduli parameters z1, z2 for the positions of the semi-local vortices
are reinterpreted as the positions of the ANO vortices ending on both sides of domain walls,
whereas the size of the semi-local vortex a = a1/a2 is reinterpreted as the position of the
domain wall. We give a schematic figure of this system in figure 28.

Let us next study the junction charge given in the last term of equation (4.67). Note that
we now consider the Abelian gauge theory and then the charge is not the usual monopole
charge in the non-Abelian gauge theories. It is called the boojum; see [12]. We can explicitly
calculate the boojum charge M− similarly to the monopole charge in equation (4.80). The
domain wall sits on x3 = 1

m1−m2
log |a2/a1| and the vortex in the left vacuum 〈2〉 resides at

z = z2, and the vortex in the right vacuum 〈1〉 at z = z1. At the both infinities x3 = ±∞
the magnetic flux reduces to that of the ANO vortex �B = (0, 0, B3�). On the other hand, the
VEV of the scalar � in the vector multiplet approaches � = m1 at x3 → +∞ and � = m2 at
x3 → −∞. Then we obtain

M− = 2

g2

∫
d3x ∂m(Bm�)

= 2

g2

(∫
R2

+

d2x B3�m1 −
∫

R2−
d2x B3�m2

)

= −4π

g2
(m1 − m2) < 0 (4.87)
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where we have used
∫

d2x B3� = −2π . Here the ordering of mass parameters m1 > m2 is
not essential because the opposite ordering m2 > m1 requires us to set � = m2 at x3 → +∞
and � = m1 at x3 → −∞ to get a consistent domain wall configuration; see section 3.1.
So the boojum charge always gives a negative contribution to the energy although their
magnitude is the same as the monopole charge given in equation (4.80). This negative charge of
the boojum is understood as the binding energy of the domain wall and the ANO vortex [12].
The sign difference between the monopole energy in equation (4.80) and the boojum energy in
equation (4.87) comes from a different mechanisms of picking up the mass difference at the
boundary. Different orientations of left and right vortices gives the mass difference for the
monopole, whereas different VEV of � of left and right vacua provides it for the boojum.
This distinction is also reflected in the opposite direction of the flows b̃(x3) = b e−(m1−m2)x

3

for the monopole and ã(x3) = a e(m1−m2)x
3

for the boojum in the CP 1 manifold of the vortex
orientation, as shown in figures 25 and 27. Note that the position of the boojum can be
estimated similarly to the position of the monopole in the previous section: the north pole
(ã = 0) corresponds to the [1]-vortex while the south pole (ã = ∞) to the [2]-vortex. Then
the middle point of CP 1, namely |ã(x3)| = 1 can be regarded as the position of the boojum

|ã(x3)| = 1 ⇒ x3 = 1

m1 − m2
log

∣∣∣∣a2

a1

∣∣∣∣ . (4.88)

Note that the position of the boojum given above agrees with the position of the domain wall
in equation (4.86). The boojum energy is spread inside the domain wall on which the two
vortices end from both sides, as shown in figure 28.

Let us consider more general configurations with multiple domain walls and multiple
vortices ending on the domain walls. In Abelian gauge theory, the moduli matrix has
been given in equation (4.84). From the view point of the domain wall, we can regard
W 〈A〉(z) = HA

0�(z) emAx3
as the weight of the 〈A〉 vacuum. Then the position of the domain

wall interpolating two vacua 〈A〉 and 〈A + 1〉 can be estimated by equating weights of the
adjacent vacua

∣∣HA
0�(z) emAx3 ∣∣ ≈ ∣∣HA+1

0� (z) emA+1x
3 ∣∣:

x3(z) ≈ 1

mA − mA+1
log

∣∣∣∣HA+1
0� (z)

HA
0�(z)

∣∣∣∣ . (4.89)

Let us next change the view from the domain wall to the vortex. Each component HA
0�(z)

of the moduli matrix (4.84) is then thought of as the moduli matrix for the [A]-vortex in the
〈A〉 vacuum. Therefore, HA

0�(z) = aA

∏kA

iA=1

(
z − ziA

)
gives the kA vortices sitting on z = ziA

in vacuum 〈A〉. Thus we conclude that the moduli matrix (4.84) gives us the domain walls
interpolating NF vacua as 〈NF〉 ↔ 〈NF − 1〉 ↔ · · · ↔ 〈2〉 ↔ 〈1〉 and each vacuum holds
the kA ANO vortices at ziA which end on the domain walls sandwiching the vacuum 〈A〉. A
generic configuration of the vortices ending on domain walls is depicted in figure 29.

It is worth commenting on the expression of wall positions given in equation (4.89).
When the number kA+1 of the vortices ending on the wall from the left (〈A + 1〉 vacuum) and
the number kA of that ending on the wall from the right (〈A〉 vacuum) is different from each
other, the domain wall bends logarithmically. This is because the vortices pull the domain
wall and the domain wall needs to pull the vortices back to keep themselves static and stable.
The logarithmic bending always appears when p-brane ends on (p + 2)-brane at a point like
D-branes in the string theory. Note that completely the same result as equation (4.89) has
been obtained from the view point of the low energy effective theory on the world volume of
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Figure 29. A generic configuration of the ANO vortices ending on domain walls.

Figure 30. Logarithmic bending and flat domain walls.

the domain wall in [12]. When kA = kA+1, the ratio HA+1
0� (z)

HA
0�(z)

becomes constant at the spatial

infinity on the z plane (|z| → ∞)

x3(z) → 1

mA − mA+1
log

∣∣∣∣aA+1

aA

∣∣∣∣ (4.90)

as |z| → ∞. So the domain wall with the same number of vortices at left and right vacua
becomes asymptotically flat; see figure 30.

4.3.4. General configurations. So far we have dealt with the minimal models: one is the
NC = NF = 2 for the monopoles in the Higgs phase and the other is the NC = 1, NF � 2
for the composite of vortices and domain walls (the boojums). Let us next investigate a
more general configuration which includes both the monopole and the boojum as the junction
charges of vortices and domain walls. For that purpose, we shall consider U(2) gauge theory
with NF = 3 flavours with M = diag(m1,m2,m3) ordered as m1 > m2 > m3. This model has
three discrete vacua 〈12〉, 〈23〉 and 〈13〉. Let us focus on the configuration which has the single
domain wall interpolating the 〈13〉 vacuum at x3 = +∞ and the 〈23〉 vacuum at x3 = −∞.
Furthermore, we put a vortex in both sides of the domain wall. In terms of the Plücker
coordinates in equation (4.74), this configuration is represented by τ 〈12〉 = 0, τ 〈13〉 = O(z)

and τ 〈23〉 = O(z). Exploiting the V -equivalence relation (4.22), we can reduce all possible
moduli matrix satisfying these conditions to either one of the following three different kinds
of the moduli matrices H0 eMx3

:(
1 a1 b

0 0 z − z1

)
eMx3 ∼

(
1
a1

(z − z1) z − z1 0
1
b

a1
b

1

)
eMx3

, (4.91)

(
z − z2 a2(z − z3) 0

0 0 1

)
eMx3

, (4.92)
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Figure 31. The junction and intersection between the vortices and the domain wall.

(
1 a3 0
0 0 z − z4

)
eMx3

, (4.93)

with z1, z2, z3, z4 ∈ C and a1, a2, a3, b ∈ C∗.
Let us begin by investigating the moduli matrices (4.92) and (4.93). These are simple

in the sense that the moduli matrices do not have off-diagonal elements which mix the first
colour and the second colour components. In fact, �0 = H0(z) e2Mx3

H
†
0 which is the source

of the master equation (4.25) becomes diagonal. Then we can deal with the first row and
the second row independently. In the case of the moduli matrix (4.92) the second row gives
no physical effects, so the moduli matrix is essentially that for the Abelian gauge theory.
In fact, the first row ((z − z2) em1x

3
, a2(z − z3) em2x

3
, 0) is nothing but the moduli matrix

for the vortices ending on the domain wall with boojum studied in section 4.3.3. Then the
position of the domain wall interpolating 〈13〉 vacuum and 〈23〉 vacuum can be estimated by
equation (4.86), so we have x3 ≈ 1

m1−m2
log|a2|. A [1]-vortex ends on the domain wall from

the right (vacuum 〈13〉) at z = z2 while a [2]-vortex ends on from the left (vacuum 〈23〉) at
z = z3. They accompany the boojum whose x3 position is the same as that of the domain
wall; see equation (4.88). The configuration is depicted in the left of figure 31. On the other
hand, the moduli matrix (4.93) has the domain wall in the first row (em1x

3
, a3 em2x

3
, 0) and the

[3]-vortex (0, 0, (z − z4) em3x
3
) in the second row. Since these two rows contribute to �0 as

an incoherent sum, the moduli matrix (4.93) can be regarded as that for the direct product of
two decoupled U(1) gauge theories rather than the U(2) gauge theory. The first row gives
the domain wall interpolating 〈13〉 and 〈23〉 vacua and the second row gives the [3]-vortex.
The domain wall and the vortex do not interact, so the composite soliton represents just an
intersection without the monopole and/or the boojum. The position of the domain wall is
x3 ≈ 1

m1−m2
log|a3| and that of the [3]-vortex is z4. This situation is depicted in the right of

figure 31.
Let us next investigate a more interesting moduli matrix (4.91) which has an off-diagonal

element b and is intrinsically non-Abelian. It turns out that the configuration has the domain
wall, the vortices, the monopoles and the boojum. We have τ 〈12〉(z) = 0, τ 〈23〉(z) = a1(z−z1)

and τ 〈13〉(z) = z − z1 and the weights of vacua W 〈AB〉(z) = τ 〈AB〉(z) e(mA+mB)x3
:

W 〈12〉(z) = 0, (4.94)

W 〈23〉(z) = a1(z − z1) e(m2+m3)x
3
, (4.95)

W 〈13〉(z) = (z − z1) e(m1+m3)x
3
. (4.96)
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The position of the domain wall dividing those two vacua can be estimated by the same method
as equation (4.89):

x3|wall ≈ 1

(m1 + m3) − (m2 + m3)
log

∣∣∣∣τ 〈23〉

τ 〈13〉

∣∣∣∣ = 1

m1 − m2
log|a1|. (4.97)

The z − z1 in τ 〈23〉 and τ 〈13〉 gives us the single ANO vortex both in the vacua 〈23〉 and 〈13〉
sit on z = z1. As shown previously, τ 〈23〉 ∝ z − z1 means a [2]- or [3]-vortex in the vacuum
〈23〉 while τ 〈13〉 ∝ z − z1 means a [1]- or [3]-vortex in the vacuum 〈13〉. In order to identify
which vortex arises in the vacua, we rewrite the moduli matrix (4.91) in the following form
and understand it from the view point of the vortex moduli matrix

eM 〈13〉x3

(
1 ã1(x

3) b̃(x3)

0 0 z − z1

)
∼ eM 〈23〉x3

( z−z1
ã1(x3)

z − z1 0

1
b̃(x3)

ã1(x
3)

b̃(x3)
1

)
(4.98)

with M 〈AB〉 ≡ diag(mA,mB), ã1(x
3) ≡ e−(m1−m2)x

3
a1 and b̃(x3) ≡ e−(m1−m3)x

3
b. Taking the

mass ordering m1 > m2 > m3 into account, we easily find that the configuration at both the
boundary x3 → ±∞ from this expression:(

1 ã1(x
3) b̃(x3)

0 0 z − z1

)
→

(
1 0 0
0 0 z − z1

)
(4.99)

as x3 → ∞ and( z−z1
ã1(x3)

z − z1 0

1
b̃(x3)

ã1(x
3)

b̃(x3)
1

)
→

(
0 z − z1 0
0 0 1

)
(4.100)

as x3 → −∞. Then the moduli matrix (4.91) has the [3]-vortex in the 〈13〉 vacuum at
x3 → +∞ and the [2]-vortex in the 〈23〉 vacuum at x3 → −∞. When going along the
x3-axis, the [2]-vortex makes a transition to the [3]-vortex with the monopole and/or the
boojum charge.

Let us first consider a parameter region where |b| � |a1|, 1. Then there exists a region
where |ã1(x

3)| � |b̃(x3)| � 1 and the moduli matrix reduces to

eM 〈13〉x3

(
1 0 b̃(x3)

0 0 z − z1

)
. (4.101)

Since the second column has no contribution, this moduli matrix has the same form as
the middle moduli matrix in equation (4.78) and gives the monopole attached by the [1]-
vortex from the left and the [3]-vortex from the right in the vacuum 〈13〉. The mass of
the [13]-monopole is given by M

[13]
+ = 4π

g2 (m1 − m3), and its position is given by the

condition |b̃(x3)| ≈ 1 as x3|[13]-monopole ≈ 1
m1−m3

log|b|. There is another region where∣∣ 1
b̃(x3)

∣∣, ∣∣ ã1(x
3)

b̃(x3)

∣∣ � 1 and there the moduli matrix reduces to the following form:

eM 〈23〉x3

(
z−z1
ã1(x3)

z − z1 0

0 0 1

)
. (4.102)

This is nothing but the moduli matrix for the domain wall interpolating 〈13〉 and 〈23〉 vacua
on which the [1]-vortex ends from the right and the [2]-vortex from the left with the boojum.
The mass of the boojum is given by M

[12]
− = − 4π

g2 (m1 − m2), and its position is the same as
that of the domain wall given by equation (4.97). The configuration is depicted in the right
of figure 32.
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Figure 32. The composite states of the vortices, the domain wall, the monopoles and the boojum.
The left figure is for the parameter region |a1| � |b| while the right is for |a1| � |b|.

Let us next consider the parameter region where |b| � |a1|. Then the moduli matrix
reduces to the following form in the region where 1, |ã1(x

3)| � |b̃(x3)|:

eM 〈13〉x3

(
1 ã1(x

3) 0
0 0 z − z1

)
. (4.103)

This moduli matrix gives us the trivial intersection of the domain wall and the [3]-vortex as
explained for the moduli matrix (4.93). There also exists a region where 1,

∣∣ 1
b̃(x3)

∣∣ � ∣∣ ã1(x
3)

b̃(x3)

∣∣.
There the moduli matrix reduces to

eM 〈23〉x3

(
0 z − z1 0

0 ã1(x
3)

b̃(x3)
1

)
. (4.104)

Since the first column has no contribution, this moduli matrix has the same form as the right-
hand side of equation (4.78) and gives the [23]-monopole sandwiched by [2]-vortex from the
left and [3]-vortex from the right. The mass of the monopole is given by M

[23]
+ = 4π

g2 (m2−m3),

and its position is given by
∣∣ ã1(x

3)

b̃(x3)

∣∣ ≈ 1: x3|[23]-monopole ≈ 1
m2−m3

log
∣∣ b
a1

∣∣. The configuration is
depicted in the left of figure 32.

Let us summarize the configuration given by the moduli matrix (4.91). There are two
types of infinitely heavy objects: one is the domain wall sitting at x3 = 1

m1−m2
log|a1|, and

the other type is the ([1]-, [2]- and [3]-)vortices penetrating the domain wall at z = z1. For
the time being, let us fix the parameters z1 and a1. Then only parameter b remains as a free
parameter corresponding to the position of the monopole which has a finite mass. When
|b| � |a1|, the [23]-monopole sandwiched by the [2]-vortex from the left and [3]-vortex from
the right in the vacuum 〈23〉, namely in the left of the domain wall. As parameter b grows,
the monopole moves to the left along the x3-axis. Around the region where |b| ∼ |a1|, the
monopole, the vortices and the domain wall merge. After the [23]-monopole passes through
the domain wall, namely the region where |b| � |a1|, the [2]-vortex ends on the domain
wall from the left and the [1]-vortex appears from the domain wall with the [13]-boojum
left in the wall. Furthermore, the [1]-vortex makes a transition to the [3]-vortex at the [13]-
monopole. Of course, the masses of the monopole and the boojum are preserved before and
after the monopole passes the domain wall: M

[13]
+ + M

[12]
− = M

[23]
+ . Interestingly, the centre

of mass of the [13]-monopole and the [12]-boojum for |b| � |a1| becomes the position of the
[23]-monopole for |b| � |a1|.

Before closing this section, we give a comment on the relation between the three moduli
matrices (4.91)–(4.93). When we take b → 0 in the moduli matrix (4.91), it reduces to
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Figure 33. Composite soliton of vortices (lumps) and domain walls.

the same form as matrix (4.93). This fact implies that the [23]-monopole can be sent to the
minus infinity of the x3-axis, so that the only trivial intersection between the domain wall
and the [3]-vortex remains. On the other hand, when we take b → ∞ in the moduli matrix
(4.91), namely the [13]-monopole is sent to the plus infinity of the x3-axis, the moduli matrix
reduces to almost the same form as matrix (4.92). However, there is a small but crucial
difference between them: the positions of two vortices can take different values (z2 �= z3) in
the matrix (4.92) while they must coincide in the limit (b → ∞) of the moduli matrix (4.91).
Therefore, we conclude that the positions of the vortices have to coincide when monopoles
attach anywhere on the vortices. Only after removing the monopoles by sending them to the
spatial infinity, the vortex in the left of the domain wall and that in the right can separate on
the domain wall. At the end of this subsection, we give an exact solution in the strong gauge
coupling limit g2 → ∞. As explained in equation (4.36), the master equation reduces to just
an algebraic equation. Then we can exactly solve them. In figure 33 we give a configuration
which is composite of vortices (lumps) and domain walls.

4.4. Composite of vortices and instantons

Although the total moduli space Mtotal
IVV in equation (4.14) of the 1/4 BPS composite system

of instantons and vortices is a parent of other 1/4 BPS composite solitons, we leave its full
analysis to future works. Instead we will here restrict ourselves to two cases of physical
interest: one is 1/4 BPS solutions interpretable as 1/2 BPS lumps on the world volume of
1/2 BPS vortices in the 1–3 plane, and the other is the intersection of two vortices. We wish
to stress, however, that these solutions are genuine solutions of the 1/4 BPS equations, rather
than the solutions of the effective theory on host vortices.

4.4.1. Instantons as lumps on vortices. We first consider 1/2 BPS lumps in the effective
theory on the world volume of a vortex (3.135) before constructing a genuine solution of
the 1/4 BPS equations. For simplicity, let us take the NC = NF ≡ N = 2 case. Defining
z = x1 + ix2, the BPS equations (3.44) and (3.45) for vortices give a solution (3.49). For a
single vortex the moduli matrix in a patch U (1,0) (3.66) is given by

H
single
v0 (z; z0, b) ≡

(
z − z0 0

b 1

)
, (4.105)
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where b ∈ C is an orientational modulus of a vortex and an inhomogeneous coordinate of
CP 1 as we explained. By promoting the moduli parameter b to a field on the world volume of
the vortex, we obtain the effective Lagrangian on the vortex (3.132). By an almost identical
argument to obtain (3.44) and (3.45) in section 3.2, we obtain a 1/2 BPS equation for lumps
[75] on the vortex

∂̄wb(w, w̄) = 0, w ≡ x3 + ix4. (4.106)

This equation gives a k-lump solution which can be expressed in terms of rational functions
of degree k [72, 75]

b(w) = Pk(w)

αPk(w) + aQk−1(w)
, (4.107)

Pk(w) ≡
k∏

i=1

(w − pi), Qk−1(w) ≡
k−1∏
j=1

(w − qj ). (4.108)

Among the moduli parameters, {p1, p2, . . . , pk} correspond to the positions of the k-lumps
on the host vortex, and a to the total size of the configurations, and {q1, q2, . . . , qk−1} to the
relative sizes of the k-lumps. The remaining modulus α specifies the boundary condition at
|w| → ∞ and parametrizes a point in the vacuum manifold CP 1, since b(w) → 1/α as
|w| → ∞. When α = 0, {pi, a, qj } can be identified with positions and sizes of k-lumps
precisely. The zeros of the denominator in equation (4.107) are mere coordinate singularities
caused by the use of an inhomogeneous coordinate b of the CP 1 manifold. The configurations
are smooth and continuous at these coordinate singularities. However, the point a = 0 and
the points pi = qj are true singularities of the moduli space of the lumps and are called small
lump singularities.

For a more general case of N = NF = N , the orientational moduli space for the non-
Abelian vortex is SU(N)/[SU(N − 1) × U(1)] � CP N−1 [76, 77, 79]. The multi-lump
solutions on the vortex in this case are obtained as lump solutions for the CP N−1 nonlinear
sigma model, which are also known [73].

4.4.2. 1/4 BPS solutions of the instantons in the Higgs phase. With the aid of the lump
solution in the effective theory on the world volume of vortex, we can now obtain the
genuine solutions of the 1/4 BPS equations (4.2)–(4.4) for instantons in the Higgs phase.
Our idea is to start replacing the moduli parameter b in the moduli matrix H

single
v0 (z; z0, b) in

equation (4.105) for a single vortex by the lump solution b(w) in equation (4.107)

H0(z, w) ∼ H
single
v0 (z; z0, b(w)) =

(
z − z0 0

Pk

αPk+aQk−1
1

)
. (4.109)

This moduli matrix is very close to the solution, except for the following deficiency:
b(w) = Pk

αPk+aQk−1
is not holomorphic at some points in w where b(w) diverges. As stated in

equation (4.14), all components in the moduli matrix H0(z, w) should be holomorphic with
respect to both z and w at any point (z, w) ∈ C2. We can overcome this problem by noting that
the lump solution b(w) is given in terms of an inhomogeneous coordinate b on CP 1. We now
transform the moduli matrix H

single
v0 (z; z0, b(w)) written in the inhomogeneous coordinate b

into that in homogeneous coordinates. The correct moduli matrix should then be

H0(z, w) =
(

(z − z0)Ak−1(w) (z − z0)(αAk−1(w) + aBk−2(w))

Pk(w) αPk(w) + aQk−1(w)

)
, (4.110)
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with Ak−1 and Bk−2 as polynomial functions of order k − 1 and k − 2 in w, given by

Ak−1(w) =
k∑

i=1

1

Qk−1(pi)

k∏
i ′(�=i)=1

(
w − pi ′

pi − pi ′

)
, (4.111)

Bk−2(w) =
k−1∑
j=1

−1

Pk(qj )

k−1∏
j ′(�=j)=1

(
w − qj ′

qj − qj ′

)
. (4.112)

We can determine these Ak−1(w) and Bk−2(w) uniquely by the following condition,

Ak−1Qk−1 − Bk−2Pk = 1, (4.113)

which requires the vorticity of the solution to agree with that in equation (4.109): the solution
should have a single vortex in the 1–3 plane and no vortices in the 2–4 plane. We see that the
right-hand side of equations (4.109) and (4.110) are related by

H0(z, w) = V (Pk(w),Qk−1(w))H
single
v0 (z; z0, b(w)), (4.114)

with the matrix V (Pk,Qk−1) defined by

V (Pk,Qk−1) ≡
( a

αPk+aQk−1
(z − z0)(αAk−1 + aBk−2)

0 αPk + aQk−1

)
. (4.115)

In a particular region of w with non-vanishing αPk + aQk−1, this matrix V (Pk,Qk−1) is
a V -equivalence transformation (4.13). However, it cannot be a legitimate V -equivalence
transformation, since it has a singularity in w. Although V (Pk,Qk−1) is not a valid
V -equivalence transformation because of these singularities in w, it is needed precisely to
compensate singularities of H

single
v0 (z; z0, b(w)) in equation (4.109), if we wish to obtain the

regular moduli matrix (4.110).
We now examine the moduli parameters of the k-instantons in the Higgs phase in detail.

Since no new parameters appear in Ak−1 and Bk−2, the configuration of k-instantons in the
Higgs phase has the 2k + 2 complex moduli parameters (z0, {pi}, {qj }, a, α). The position
of the single vortex on the 1–3 plane is given by the moduli parameter z0, which decouples
from other moduli parameters and has a flat metric. This decoupling of z0 can be recognized
also from the Kähler potential (3.135). Therefore the moduli space of instantons in the Higgs
phase can be written as

Mk-instantons � C × Mk-lumps � C × {ϕ|C → M̂1-vortex, ∂̄wϕ = 0}. (4.116)

We easily realize that {pi} correspond to the positions of k-instantons inside the vortex, a to
the total size and the orientation of the configurations and {qj } to the relative sizes and the
orientations of the instantons. In the limit of vanishing a, the rank of the moduli matrix (4.110)
reduces by 1 and its determinant vanishes. Then the point a → 0 is singular in the moduli
space. On the other hand, the small lump singularities coming from pi = qj in equation (4.107)
arise as divergences of 1/Pk and 1/Qk−1 in Ak−1 and Bk−2 in equations (4.111)
and (4.112). Therefore we observe that the small lump singularities with a = 0 or pi = qj in
equation (4.107) are now interpreted as the small instanton singularities in the Higgs phase. We
can easily confirm that the points pi = pi ′ for i �= i ′ and qj = qj ′ for j �= j ′, respectively, are
not singularities of equations (4.111) and (4.112). The remaining parameter α parametrizes
CP 1 similarly to the lump solutions. In the case of 1/2 BPS vortex, this α ∈ CP 1 is a
normalizable moduli, whereas it becomes a nonnormalizable moduli in the case of the 1/4
BPS lumps. This sort of phenomenon occurs often: normalizable moduli of the host soliton
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can become a non-normalizable moduli of a soliton on the host soliton. In summary we find
z0 ∈ C, pi ∈ C, a ∈ C∗ ≡ C − {0} � R × S1, qj ∈ C − {p1, p2, . . . , pk} and α ∈ CP 1.

Let us consider the simplest case of a single instanton (k = 1) with A0 = 1 and B−1 = 0
in some detail. The lump solution b(w) = w−p1

α(w−p1)+a
in the effective theory on a vortex

suggests a solution of the 1/4 BPS equations with the moduli matrix

H 1-instanton
0 =

(
z − z0 α(z − z0)

w − p1 α(w − p1) + a

)
. (4.117)

We can clarify the physical significance of these four complex moduli parameters z0, p1, a, α,
by transforming the moduli matrix in equation (4.117) into that with α = 0 by an SU(2)F

rotation U combined with a V -equivalence transformation:

H 1-instanton
v0 (z; a, p1, α) ∼ H 1-instanton

v0 (z; a0, p0, α = 0)U. (4.118)

Then we obtain the physical position p0 and the size |a0| of the instanton in the vortex as

p0 = p1 − α∗

1 + |α|2 a, |a0| = |a|
1 + |α|2 , (4.119)

which are invariant under the SU(2)F rotation.
Let us now consider the topology of the moduli space of one instanton in the Higgs phase.

The moduli matrix H 1-instanton
0 can be transformed into H

′1-instanton
0 in another patch of the

moduli space by a V -equivalence transformation in (4.13)

H
′1-instanton
0 ≡

(
α′(w − p′

1) + a′ w − p′
1

α′(z − z0) z − z0

)
∼ H 1-instanton

0 , (4.120)

with the following relation between coordinates in two patches

α′ = 1

α
, a′ = − a

α2
, p′

1 = p1 − a

α
. (4.121)

Both α and α′ are the standard inhomogeneous coordinates of the CP 1 in different patches,
which are enough to cover the whole manifold. Since we find that a requires a nontrivial
transition function −1/α2 between two patches, it is a tangent vector as a fibre on the CP 1.
On the other hand, we can use an invariant global coordinate for two patches, p0, instead of
p1. This implies that the space C parametrized by p0 is a direct product to the CP 1. Therefore
the topology of the moduli space of one U(2) instanton in the Higgs phase is given by

(z0, p0, a, α) ∈ C × C × (C∗ ×∗ CP 1) � M1-instanton, (4.122)

where (C∗ ×∗ CP 1) is the tangent bundle with a base space CP 1 and a fibre C∗.
For N > 2, we can specify the moduli matrix H0(z, w) for a particular class of 1/4 BPS

solutions which can be interpreted as 1/2 BPS states in the vortex theory, similarly to the case
of N = 2. Thus we can obtain the 1/4 BPS states corresponding to the U(N) instantons in
the Higgs phase by repeating the same discussion.

4.4.3. Intersection of vortices. We can obtain more varieties of solutions, if we do not restrict
ourselves to solutions interpretable as solitons in the effective theory on a host vortex. For
instance, the intersection of two or more vortices cannot be understood as solitons on vortices,
since the energy of such composite solitons diverges in the effective theory. The moduli matrix
approach allows us to construct such solitons of intersecting vortices directly.

In the theory with NC = NF ≡ N = 2, the following two moduli matrices give
configurations with νv = kz (�0) vortices in the 1–3 plane and νv′ = kw (�0) vortices in
the 2–4 plane
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H0 =
(

zkz 0
0 wkw

)
, (4.123)

H0 =
(

zkzwkw 0
0 1

)
. (4.124)

The two vortices intersect at a point z = w = 0 in both cases. The moduli matrix in
equation (4.123) gives a trivial intersection carrying no instanton charge. On the other hand,
the moduli matrix in equation (4.124) gives two vortices with a nontrivial intersection carrying
the instanton charge νi = −kzkw at the intersection point. In this case the instanton charge
contributes negatively to the energy of the composite soliton. This negative contribution can
be interpreted as a binding energy of two vortices at the intersection, similarly to the case of
an Abelian junction of domain walls in equation (4.51). The (infinitely) large energy coming
from vortices is slightly cancelled by the negative contribution from the intersection giving a
positive energy as a whole. We can call this composite soliton as an ‘intersecton’, since the
instanton charge is stuck at the intersecting point of vortices. It cannot move once the vortices
are fixed.

Let us consider the case of NC < NF theory where semi-local vortices are available. In
this case, we can take a strong coupling limit g2 → ∞ to obtain an exact solution. In this
strong coupling limit, we obtain a nonlinear sigma model whose target space is the cotangent
bundle over the complex Grassmann manifold, T ∗(GNF,NC), as explained in section 2.3. Then
the master equation (4.12) can be solved algebraically as �g2→∞ = �0 = c−1H0H

†
0 . For

simplicity we take the U(1) gauge theory with four flavours: NC = 1, NF = 4. We obtain
non-trivially intersecting vortices with νv = kz, νv′ = kw by considering the following moduli
matrix,

H0 = (zkzwkw , zkz , wkw , 1). (4.125)

We find the exact solution H = (1/
√

�g→∞)H0 with

�g→∞ = �0 = (|z|2 + 1)kz (|w|2 + 1)kw . (4.126)

The instanton charge is found to be the product of vorticities, namely νi = −kzkw. This
solution explicitly shows that the U(1) instantons are stuck at the intersection of vortices.
This instanton charge also contributes negatively to energy, in agreement with our observation
that the instanton charge in Abelian gauge theories can be interpreted as a binding energy
of vortices. However, we have observed that the instanton charge νi changes its sign under
the duality transformation NC ↔ NF − NC (with fixed NF) of nonlinear sigma models in
equation (2.23). By using this duality transformation, we can also obtain intersections of
vortices in nonlinear sigma models coming from non-Abelian gauge theories. As a result,
we find intersections of vortices that contribute positively to energy of the composite soliton,
similarly to the non-Abelian junction contributing positively to the energy.

Let us summarize this section by observing that there exist three types of instantons. The
first type is interpretable as lumps living inside a vortex. The second type is an instanton stuck
at the intersection point of vortices. The third type is the intersection of vortices without any
interaction. This last type has been observed in equation (4.123). We expect that the most
general solution is given by the mixture of these configurations, similarly to the webs of walls
in section 4.2.

4.5. Solitons in world volume of solitons

In this section we have discussed 1/4 BPS states of composite solitons. To do that we have
worked out the moduli parameters in the moduli matrix for 1/4 BPS systems. If we could
solve the master equations analytically or numerically we would obtain the full solutions.
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As discussed below one big advantage of this method is that the moduli matrix contains
non-normalizable modes also.

In order to discuss the composite solitons there exists another method, the moduli
approximation. In this method one first constructs the effective action of a host 1/2 BPS
soliton by using the Manton’s method [29] as discussed in section 3.3. Then one constructs
1/2 BPS solitons in this effective theory. At the end, one has to check matching of topological
charges in the original theory and in the effective theory.

It was this method to find a confined monopole in the Higgs phase [103]. Namely one
constructs effective theory on a single non-Abelian vortex in the model with NF = NC = 2
with massive hypermultiplets. It is the CP 1 model with a potential, which contains two vacua.
Its Kähler potential is given in equation (3.135). Here note that the coefficient in the second
term (the Kähler class of CP 1) is given by 4π/g2. Then one constructs a kink interpolating
between these two vacua. The energy of the kink can be calculated from equation (3.3) as
the product of the Kähler class 4π/g2 and the mass difference �m, to give 4π�m/g2. This
coincides with the energy (4.80) of a monopole, and the topological charges match in the
original theory and in the effective theory. Therefore the kink in the vortex can be interpreted
as a monopole in the original (bulk) theory. In fact it was this argument for the authors in
[105] to determine the Kähler class from only symmetry argument, while we have derived it
in equation (3.135) from direct calculation.

In the same way, one can construct instantons. First one constructs a single vortex in the
model with NF = NC = 2 with massless hypermultiplets. The effective action on it is the CP 1

model without potential. Then one can construct the CP 1-lumps. The energy of lumps can be
calculated by the product of the Kähler class 4π/g2 and the lump number n ∈ Z � π2(CP 1),
to give 4πn/g2. This coincides with the instanton number, and so lumps in the vortex can be
regarded as instantons in the original theory [13].

The wall–vortex system can be constructed from the wall point of view. When a vortex
ends on a domain wall, it can be understood as a BIon in the effective theory on the wall [109].
The negative energy of the boojum can also be obtained from the effective theory on a double
wall [14].

These configurations can be classified into two cases. The first is the case that the soliton
is made of the internal (orientational) moduli of the host soliton. The second is the case that
it is made of spacetime moduli. The first case contains monopoles (instantons) on a vortex
while the second case contains vortices ending on a domain wall.

Clearly this moduli approximation has limitations. First the slow movement
approximation is used to construct effective action. Therefore this method cannot be applied
to a region with rapidly varying fields. For instance, the centre of the vortex of wall–vortex
composite system cannot be described accurately by the wall effective action. Second it
cannot be applied to non-normalizable modes because one cannot construct an effective action
for those modes. Our method of the moduli matrix overcomes both of these problems. We
do not use the slow movement approximation at all. Moreover the moduli matrix contains
non-normalizable modes also. When we wish to view 1/4 BPS system of monopole, vortex
and walls from the vortex point of view, for instance, the incorporation of non-normalizable
modes provides the following advantage. Semi-local vortices (lumps) have non-normalizable
modes as well as normalizable modes, as seen in section 3.2. If a modus corresponding to
normalizable mode in the moduli matrix for 1/2 BPS vortex is promoted to a ‘field’ depending
on the vortex world volume in the sense of (4.82), it can produce a kink inside the vortex,
namely a confined monopole attached by vortices. On the other hand, if non-normalizable
mode depends on the coordinates corresponding to the vortex world volume, domain walls
appear in the bulk instead of inside the vortex. This is because non-normalizable moduli of a
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vortex are bulk modes living at spatial infinities of the vortex. This point of view is missing in
the moduli approximation.

However the moduli approximation is powerful for non-BPS composite solitons, for which
the method of the moduli matrix cannot be used. For instance, domain walls and instantons
cannot coexist as a BPS state [15]. If we consider them together, the configuration breaks all
SUSY and therefore it is non-BPS. Nevertheless we can construct the effective action on walls
as usual, and can construct a soliton on it. We have found in [16] that effective action on walls
is precisely the Skyrme model including the four derivative term. Skyrmions are non-BPS and
so we cannot compare energy in effective theory and the original theory. Instead we should
calculate topological charges directly. Since we can show that the baryon (Skyrmion) number
in the effective theory coincides with the instanton number, the Skyrmions in the effective
theory can be regarded as instantons in the original theory.

5. Discussion

We have seen that the SDYM-Higgs equation describing the instanton–vortex system is
the most general in the sense that it gives all other equations by dimensional reductions.
Accordingly, the moduli matrix H0(z, w) of this system contains the moduli matrices of all
other systems as special cases. However a complete understanding of H0(z, w) is still missing
at present while the moduli matrices have been more thoroughly studied in this review for
walls, vortices, domain wall webs and wall–vortex–monopole systems.

In this review, we have considered only static solutions. Time-dependent stationary
solitons, such as Q-kinks [48] and Q-lumps [74], are also BPS states. Some of these dyonic
objects have been discussed in [15, 119]. These solitons are worth studying in more detail.

We have considered effective Lagrangian on only elementary solitons, namely vortices
and walls. Construction of effective Lagrangian of composite solitons is also possible, if they
have normalizable modes. For instance, effective Lagrangian of monopoles (instantons) in a
vortex may be obtainable, but essentially the same dynamics should already be contained in
the kink (lump) solutions using the effective Lagrangian on vortex. Some nontrivial examples
of effective Lagrangian on composite solitons are

• loops in domain wall webs,
• vortices stretched between domain walls in the wall–vortex–monopole system.

We know from the discussion of conserved SUSY [15] that they are described by a (2, 0)

sigma model in d = 1 + 1 dimensions or its dimensional reduction. Construction of these
effective Lagrangians is very interesting because they resemble the (p, q) 5-brane webs [100]
and the Hanany–Witten brane configuration [111], respectively.

We should note that another set of 1/4 BPS equations and the unique set of 1/8 BPS
equations have also been found [15, 119]. Let us list their co-dimensions in d = 5 + 1
dimensions [15]. Another set of 1/4 BPS equations contains triply intersecting vortices [128]
whose co-dimensions are listed by × (world volume is denoted by ©) as

1/4 VVV 0 1 2 3 4 5

Vortex © © × × © ©
Vortex © × © × © ©
Vortex © × × © © ©

The unique set of 1/8 BPS equations can contain various solitons with co-dimensions denoted
by × (world volume is denoted by ©) as
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1/8 IV6 0 1 2 3 4 5

Instanton © × × × × ©
Vortex © © × × © ©
Vortex © × © × © ©
Vortex © × × © © ©
Vortex © × © © × ©
Vortex © © × © × ©
Vortex © © © × × ©

Systematically solving these equations is much more difficult than so far studied and remains
as a future problem.

Let us finally list some of other interesting future directions: quantum effects of solitons,
non-perturbative dynamics of field theories as well as string theory, and applications to particle
physics, cosmology, condensed matter physics and nuclear physics. We hope this review article
to be useful to explore these and other problems.
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